| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 2 / 2
First pagePrevious page1Next pageLast page
Heike M. A. Ehmann, 2012, doctoral dissertation

Abstract: The goal of this thesis is the structuring of cellulose nanocrystals using different organofunctional silane compounds and different cationic species to prepare highly functional materials with tailored properties. In addition different new aspects and approaches for the structural characterization of functionalised cellulose nanocrystals (CNC) functionalised with different organofunctionalalkoxysilanes as well as cationic species have been introduced. Cellulose nanocrystals (CNC) are prepared using three different acidic conditions to hydrolyse microcrystalline cellulose (MCC). The sulphuric acid hydrolysis introduces highly negative charged sulphate groups on the CNC. The aqueous nanocrystalline cellulose suspensions (aNCS) are analysed in terms of ζ-potential related to the pH and concentration to investigate the stability while dynamic light scattering (DLS) is used to investigate the size distribution. The hydrochloric acid hydrolysis in contrast only removes the amorphous regions but the so obtained CNC are less stabilized (decreased ζ-potential) and tend to agglomerate very fast. The use of the mixture of both acids (HCl and H2SO4) during the hydrolysis of MCC introduces less sulphate groups compared with the sulphuric acid hydrolysis. AFM investigations show that the shapes of the CNC are highly influenced by the hydrolysis conditions. While the shape of the H2SO4 hydrolysed CNC is rod like, while the shape of the other two CNC samples is more spherical in nature. One of the major topic in this work is the analysis of aNCS in aqueous solutions by small angle x-ray scattering (SAXS). The use of the generalized indirect Fourier transformation (GIFT) method allows the analysis of these systems and structural properties such as shape, size and surface charge of aNCS can be assessed. Using this kind of characterisation it can be seen that the shape of the H2SO4 hydrolysed CNC is definitely rod like while the other CNC sample can be described with spheres. In addition to the aNCS characterisation different substrates (Si-wafer, glass slides, polystyrene, etc.) are equipped with aNCS using a variety of different deposition methods (e.g. spin coating, solution casting, dip coating). The resulting films are studied in terms of morphology AFM, SARFUS and SEM. Sophisticated scattering techniques are employed for surface structural characterisation as grazing incidence small angel x-ray scattering. The determination of surface free energies allows conclusions about the hydrophilicity and hydrophobicity as well as the interaction capacity with different liquids. It can be seen that besides the hydrophilic nature of the CNC also hydrophobic interactions are present. The highly negative charged CNC sample which was prepared using sulphuric acid hydrolysis is found to be best suitable for the further hybridization with different organofunctional silanes and for the layer by layer approach (LBL) with different cationic species. The organofunctionalalkoxysilanes which were used in this study can be divided into three groups (e.g filler, surface functionalisation silanes, cross linking silanes). Depending on the nature of the organic residue the silanes are capable to introduce functionalities with enhanced hydrophobic and olephobic properties. The surface energies are investigated using contact angle method, while the surface energies are calculated using three different model approaches (OWRK, Wu, Acid-Base). The most increased hydrophobic and oleophobic properties were measured for trimethylfluorophenylsilantriol (PFTEOS). The morphology of the coated silanes is investigated using SAFRUS technique. It can be seen that nearly all silanes can be coated as homogeneous films onto different substrates (Si-wafer, SURFs, glass slides) with different methods (spin coating, solution casting). The macroscopic appearance of solution casted silanes is investigated using optical microscopy. The differences of the structural nature of the so obtained coatings and detaching films were investigated...
Keywords: Cellulose nanocrystals, sol-gel chemistry, organofunctionalalkoxysilanes, hybrid materials, small angle x-ray scattering, generalized indirect Fourier Transformation, quartz crystal microbalance dissipation, surface free energy, surface functionalisation, layer by layer
Published: 28.11.2012; Views: 1910; Downloads: 123
.pdf Full text (8,59 MB)

Sebastijan Kovačič, 2011, dissertation

Abstract: A new class of polyHIPE materials has been prepared using high internal phase emulsions (HIPEs) with monomers in both phases. Resulting materials, namely hybrid polyHIPE materials, are obtained consisting of hydrophobic matrix (consisted of styrene cross-linked with DVB or dicyclopentadiene) filled with hydrophilic polymer gel (polyacrylic acid or polyNIPAM) and exhibit morphology changes according to pH and temperature of the surrounding medium. Our focus with regards to the production of hybrid polyHIPE materials was the responsiveness of such materials used for flow control. This property is beneficial for controlling the flow of the solution through the monolithic polymers. Furthermore, polyHIPE materials have also been prepared by using ring opening metathesis polymerisation of monomers, such as dicyclopentadiene and norbornene. Obtained materials have Young’s moduli in the range of hundred times higher than standard polyHIPE materials with the same level of porosity which represents a very important improvement in the development of highly porous cellular polymeric materials.
Keywords: emulsions, high internal phase emulsions, polymers, polyHIPEs, hybrid, hybrid polyHIPE materials, ROMP, flow-through, styrene, DVB, acrylic acid, NIPAM
Published: 04.05.2011; Views: 2603; Downloads: 228
.pdf Full text (3,71 MB)

Search done in 0.03 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica