1. 6th International Conference En-Re Energy & Responsibility : Book of Extended Abstracts2024 Abstract: In the context of escalating climate challenges, the EnRe conference is dedicated to exploring pathways to climate neutrality and the sustainable green transition. The conference is focused on the development and implementation of innovations supporting the transformation of energy systems, industrial systems, and living systems, all with the goal of creating a sustainable future with net-zero emissions. The conference brings together experts, researchers, policymakers, and business leaders to share their experiences, research, and visions. The aim of the conference is to foster collaboration and exchange of ideas, and to collectively develop comprehensive approaches and strategies for achieving climate neutrality. This conference is not just a knowledge exchange, but also a platform for encouraging concrete actions that will ensure a greenerand more sustainable future for our next generations to come. Keywords: alternative energy systems, dynamic tariffing, electrical machines and drives, energy conversions, financing energy projects, nuclear energy, conventional energy systems, climate changes - climate pan, mathematical methods in engineering, micro and nano energy, low-carbon technologies and strategies, renewable energy technologies heating and cooling systems, smart buildings, cities and networks, policies and strategies for renewable energy sources, energy efficiency and the climate Published in DKUM: 17.05.2024; Views: 332; Downloads: 40 Full text (10,40 MB) This document has many files! More... |
2. Carbon-free heat production for high-temperature heating systemsSven Gruber, Klemen Rola, Danijela Urbancl, Darko Goričanec, 2023, original scientific article Abstract: The article presents a new carbon-free heat production technology for district heating, which consists of a combined heat and power generation fuel cell (FC CHP) with CO2 capture and a two-stage cascade high-temperature heat pump (TCHHP). The FC generates heat and electricity, the latter being used to drive the compressors of the TCHHP. During the winter period, the water temperature achieved can occasionally be too low, so it would be heated up with hydrogen gas boilers. The hydrogen would be produced by reforming natural gas, synthetic methane, or biogas. The results are presented with natural gas utilization—the ratio between the obtained heat flow transferred directly to the water for district heating and the input heat flow of natural gas. In the case of a return water temperature of 60 °C and district heating temperature of 85 °C, the TCHHP, whose heat source is groundwater, achieves plant efficiency of 270.04% in relation to the higher heating value (HHV) and 241.74% in relation to the lower heating value (LHV) of natural gas. A case with a TCHHP whose heat source is low-temperature geothermal water achieves a plant efficiency of 361.36% in relation to the HHV and 323.49% in relation to the LHV. Keywords: carbon-free, decarbonization of district heating systems, fuell cell, high-temperature district heating, high-temperature heat pump Published in DKUM: 10.05.2024; Views: 233; Downloads: 17 Full text (3,32 MB) This document has many files! More... |
3. Particulate matter air pollution in the Republic of Slovenia and its national spatial emissions releasePetra Dolšak Lavrič, Maja Ivanovski, Darko Goričanec, Danijela Urbancl, 2023, original scientific article Abstract: In this work, an impact of particulate matter (PM) on air pollution and its emissions released is investigated. Concentration levels of PM10 and PM2.5 in the Republic of Slovenia (RS) were analyzed on daily, weekly, monthly, quartile, and annual data and then compared. The study was conducted from January 1, 2020 to December 31, 2020 at two monitoring stations, so-called urban traffic and urban industrial. Obtained results showed that the highest concentrations of PM in air were during the cold months of the year when the temperatures are lower (< 6%). Results from heating seasons (from October 1, 2019 and March 31, 2020 and from October 1, 2020 to March 31, 2021) showed the highest concentration levels of PM10 between 9:00 and 14:00 and between 18:00 and 22:00, with highest concentrations recorded during the winter months (January and February). Additionally, emission building inventory was built based on PM10 and PM2.5 emissions released. The study includes yearly spatial building emissions release model considering currently installed high PM emitted stoves. The building model for the Republic of Slovenia has been developed by using 500 x 500 m model grid. Obtained results showed that changing currently low efficient appliance with advanced appliance would result in significant lower PM emissions released from building sector Keywords: air pollution, particulate matter, heating season, emission release, Slovenia Published in DKUM: 10.05.2024; Views: 261; Downloads: 14 Full text (1,12 MB) This document has many files! More... |
4. Production, thermal analysis and application of roll bond solar absorbers for heating and cooling in residential buildingsJurij Avsec, Daniel Brandl, Helmut Schober, Urška Novosel, Janko Ferčec, 2019, published scientific conference contribution Abstract: The effects of global warming are a crucial issue in the near future. The combination of renewable energy sources (RES) and the use of alternative energy technology such as heat pumps and hydrogen technology could solve major ecological problems. In Central Europe, the energy demand for heating and cooling in residential buildings is clearly higher than for generation of electricity or energy for trucking e.g. In this paper, a new solar thermal absorber has been analysed which is produced by using the so called "roll bond" technology (ABS Network, 2018). The focus of this study lies on the determination of the energy efficiency by combining this solar thermal absorber with heat pumps and biomass or geothermal systems in the region of Central Europe. Keywords: roll bond solar absorbers, thermal analysis, solar
systems, heat pump systems, heating and cooling in residential
buildings Published in DKUM: 04.12.2023; Views: 332; Downloads: 32 Full text (18,06 MB) This document has many files! More... |
5. |
6. Ground-sourced energy wells for heating and cooling of buildingsHeinz Brandl, Dietmar Adam, Roman Markiewicz, 2006, original scientific article Abstract: Energy wells are thermo-active elements for an economical extraction or storage of ground energy, similar to energy piles and other deep foundation elements also used as heat exchangers. Heating and/or cooling of buildings requires a primary and secondary thermo-active circuit, commonly connected by a heat pump. The paper gives several design aspects of energy wells which can be also used for the design of deep energy foundations. Thermal response tests have proved suitable for the in-situ determination of thermal ground properties required for an optimised design. Moreover, different systems of energy wells are discussed, and a comprehensive pilot research project is described. Keywords: energy wells, energy foundations, geothermal geotechnics, geothermal heating/cooling, thermo-active structures, thermal ground properties, field testing Published in DKUM: 17.05.2018; Views: 1086; Downloads: 129 Full text (4,24 MB) This document has many files! More... |
7. Nanocomposite foams from iron oxide stabilized dicyclopentadiene high internal phase emulsions : preparation and brominationSebastijan Kovačič, Christian Slugovc, Gregor Ferk, Nadejda B. Matsko, 2014, professional article Abstract: Nanocomposite polyHIPE foams with open-cellular morphology were obtained using nanoparticles ($γFe_2O_3/Fe_3O_4$), surfactant (Pluronic L121) or nanoparticle/surfactant stabilized dicyclopentadiene high internal phase emulsions (DCPD HIPEs). Upon curing, cavity sizes were found to vary drastically between 950 ± 360 µm down to 7 ±3 µm de- pending on the HIPE formulations. As-obtained nanocomposite polyHIPE foams were functionalized using elemental bromine in THF. Upon bromination the nanoparticles are moved from the cavities surfaces into the bulk phase of the polymer scaffold, which affects the inductive-heating capability of the magnetic nanocomposite foams decreasing it by the factor of 2. Keywords: chemical technology, nanocomposites, bromination, microstructure, pickering HIPEs, $γFe_2O_3/Fe_3O_4$ nanoparticles, Ring Opening Metathesis Polymerization (ROMP), dicyclopentadiene, inductive heating Published in DKUM: 24.08.2017; Views: 1237; Downloads: 143 Full text (967,87 KB) This document has many files! More... |
8. The influence of electric arc activation on the speed of heating and the structure of metal in weldsOleksandr Savytsky, Mychailo Savytsky, Darko Bajić, Yuriy Shkrabalyuk, Tomaž Vuherer, 2016, original scientific article Abstract: This paper presents the results of a research related to the impact of electric arc activation onto drive welding energy and metal weld heating speed. It is confirmed that ATIG and AMIG methods, depending on metal thickness, single pass weldability and chemical composition of activating flux, enable the reduction of welding energy by 2-6 times when compared to conventional welding methods. Additionally, these procedures create conditions to increase metal weld heating speed up to 1,500-5,500 °C/s-1. Steel which can be rapidly heated, allows for a hardened structure to form (with carbon content up to 0.4%), together with a released martensitic structure or a mixture of bainitic-martensitic structures. Results of the research of effectiveness of ATIG and AMIG welding showed that increase in the penetration capability of electric arc, which increases welding productivity, is the visible side of ATIG and AMIG welding capabilities. Keywords: arc welding, active flux, penetration, heating speed, driving energy Published in DKUM: 07.07.2017; Views: 1290; Downloads: 365 Full text (592,40 KB) This document has many files! More... |
9. Characterization of Slovenian coal and estimation of coal heating value based on proximate analysis using regression and artificial neural networksDarja Kavšek, Adriána Bednárová, Miša Biro, Roman Kranvogl, Darinka Brodnjak-Vončina, Ernest Beinrohr, 2013, original scientific article Abstract: Chemical composition of Slovenian coal has been characterised in terms of proximate and ultimate analyses and the relations among the chemical descriptors and the higher heating value (HHV) examined using correlation analysis and multivariate data analysis methods. The proximate analysis descriptors were used to predict HHV using multiple linear regression (MLR) and artificial neural network (ANN) methods. An attempt has been made to select the model with the optimal number of predictor variables. According to the adjusted multiple coefficient of determination in the MLR model, and alternatively, according to sensitivity analysis in ANN developing, two descriptors were evaluated by both methods as optimal predictors: fixed carbonand volatile matter. The performances of MLR and ANN when modelling HHV were comparable; the mean relative difference between the actual and calculated HHV values in the training data was 1.11% for MLR and 0.91% for ANN. The predictive ability of the models was evaluated by an external validation data set; the mean relative difference between the actual and predicted HHV values was 1.39% in MLR and 1.47% in ANN. Thus, the developed models could be appropriately used to calculate HHV. Keywords: Slovenian coal, higher heating value, HHV, regression, artificial neural network Published in DKUM: 03.04.2017; Views: 29248; Downloads: 376 Full text (749,77 KB) This document has many files! More... |
10. Long-term performance of central heat pumps in Slovenian homesMilan Marčič, 2004, original scientific article Abstract: Due to limited availability of natural resources exploited for heating and in order to reduce the environmental impact, people should strive to use renewable energy sources. Heat pumps allow the conversion of ambient heat, available in almost unlimited quantities, to heating energy. The paper describes an energy-saving house provided with good thermal insulation and heated by an air-to-water split-type heat pump. The condenser is located in the attic and the evaporator in the boiler room of the house. The house heating up to the ambient temperature of 0 °C was provided by an air-to-water heat pump and a condensing oil heating furnace if the ambient temperature dropped to below 0 °C. The results of the nine-year testing showed that the heat pump was used during most of the heating season. The average coefficient of performance (COP) of the air-to-water heat pump in nine heating seasons was3.16, indicating that over 68% of the heat was obtained from the ambient air. The comparison between COP of air-to-water heat pumps in energy-saving house and of water-to-water heat pumps fitted in houses dealt with under otherprojects indicates that water-to-water heat pumps have higher COPs. The heat pumps obtain heat from groundwater, hence they are capable of operating throughout the heating season, and possess the highest COP. The advantage of an air-to-water heat pump, however, lies in its simple design and a wide rangeof applications. Due to limited availability of natural resources exploited for heating and in order to reduce the environmental impact, people should strive to use renewable energy sources. Heat pumps allow the conversionof ambient heat, available in almost unlimited quantities, to heating energy. The paper describes an energy-saving house provided with good thermal insulation and heated by an air-to-water split-type heat pump. The condenser is located in the attic and the evaporator in the boiler room of thehouse. The house heating up to the ambient temperature of 0 °C was providedby an air-to-water heat pump and a condensing oil heating furnace if the ambient temperature dropped to below 0 °C. The results of the nine-year testing showed that the heat pump was used during most of the heating season. The average coefficient of performance (COP) of the air-to-water heat pump in nine heating seasons was 3.16, indicating that over 68% of the heat was obtained from the ambient air. The comparison between COP of air-to-water heatpumps in energy-saving house and of water-to-water heat pumps fitted in houses dealt with under other projects indicates that water-to-water heat pumps have higher COPs. The heat pumps obtain heat from groundwater, hence they are capable of operating throughout the heating season, and possess the highest COP. The advantage of an air-to-water heat pump, however, lies in its simple design and a wide range of applications. In comparison to the furnace, the heat pump yielded considerable saving in fuel and monry, which justifies its home heating application in the Central European climatic area. The analys Keywords: heating, energy saving houses, heat pumps, therodynamics, refrigeration Published in DKUM: 01.06.2012; Views: 2320; Downloads: 120 Link to full text |