| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 26
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
1.
A hierarchical universal algorithm for geometric objects’ reflection symmetry detection
Borut Žalik, Damjan Strnad, Štefan Kohek, Ivana Kolingerová, Andrej Nerat, Niko Lukač, David Podgorelec, 2022, izvirni znanstveni članek

Opis: A new algorithm is presented for detecting the global reflection symmetry of geometric objects. The algorithm works for 2D and 3D objects which may be open or closed and may or may not contain holes. The algorithm accepts a point cloud obtained by sampling the object’s surface at the input. The points are inserted into a uniform grid and so-called boundary cells are identified. The centroid of the boundary cells is determined, and a testing symmetry axis/plane is set through it. In this way, the boundary cells are split into two parts and they are faced with the symmetry estimation function. If the function estimates the symmetric case, the boundary cells are further split until a given threshold is reached or a non-symmetric result is obtained. The new testing axis/plane is then derived and tested by rotation around the centroid. This paper introduces three techniques to accelerate the computation. Competitive results were obtained when the algorithm was compared against the state of the art.
Ključne besede: computer science, computational geometry, uniform subdivision, centroids
Objavljeno v DKUM: 01.04.2025; Ogledov: 0; Prenosov: 4
.pdf Celotno besedilo (2,99 MB)
Gradivo ima več datotek! Več...

2.
Predictive modelling of weld bead geometry in wire arc additive manufacturing
Kristijan Šket, Miran Brezočnik, Timi Karner, Rok Belšak, Mirko Ficko, Tomaž Vuherer, Janez Gotlih, 2025, izvirni znanstveni članek

Opis: This study investigates the predictive modelling of weld bead geometry in wire arc additive manufacturing (WAAM) through advanced machine learning methods. While WAAM is valued for its ability to produce large, complex metal parts with high deposition rates, precise control of the weld bead remains a critical challenge due to its influence on mechanical properties and dimensional accuracy. To address this problem, this study utilized machine learning approaches—Ridge regression, Lasso regression and Bayesian ridge regression, Random Forest and XGBoost—to predict the key weld bead characteristics, namely height, width and cross-sectional area. A Design of experiments (DOE) was used to systematically vary the welding current and travelling speed, with 3D weld bead geometries captured by laser scanning. Robust data pre-processing, including outlier detection and feature engineering, improved modelling accuracy. Among the models tested, XGBoost provided the highest prediction accuracy, emphasizing its potential for real-time control of WAAM processes. Overall, this study presents a comprehensive framework for predictive modelling and provides valuable insights for process optimization and the further development of intelligent manufacturing systems.
Ključne besede: wire arc additive manufacturing, WA AM, predictive modelling, machine learning, weld bead geometry, XGBoost
Objavljeno v DKUM: 13.03.2025; Ogledov: 0; Prenosov: 7
.pdf Celotno besedilo (3,54 MB)

3.
Toward optimal robot machining considering the workpiece surface geometry in a task-oriented approach
Aleš Hace, 2024, izvirni znanstveni članek

Opis: Robot workpiece machining is interesting in industry as it offers some advantages, such as higher flexibility in comparison with the conventional approach based on CNC technology. However, in recent years, we have been facing a strong progressive shift to custom-based manufacturing and low-volume/high-mix production, which require a novel approach to automation via the employment of collaborative robotics. However, collaborative robots feature only limited motion capability to provide safety in cooperation with human workers. Thus, it is highly necessary to perform more detailed robot task planning to ensure its feasibility and optimal performance. In this paper, we deal with the problem of studying kinematic robot performance in the case of such manufacturing tasks, where the robot tool is constrained to follow the machining path embedded on the workpiece surface at a prescribed orientation. The presented approach is based on the well-known concept of manipulability, although the latter suffers from physical inconsistency due to mixing different units of linear and angular velocity in a general 6 DOF task case. Therefore, we introduce the workpiece surface constraint in the robot kinematic analysis, which enables an evaluation of its available velocity capability in a reduced dimension space. Such constrained robot kinematics transform the robot’s task space to a two-dimensional surface tangent plane, and the manipulability analysis may be limited to the space of linear velocity only. Thus, the problem of physical inconsistency is avoided effectively. We show the theoretical derivation of the proposed method, which was verified by numerical experiments.periments.
Ključne besede: robotics, automation, robot machining, workpiece surface polishing, collaborative robot, manipulability, complex surface geometry, motion planning
Objavljeno v DKUM: 25.11.2024; Ogledov: 0; Prenosov: 0

4.
Metallurgical and geometric properties controlling of additively manufactured products using artificial intelligence
Snehashis Pal, Igor Drstvenšek, 2021, izvirni znanstveni članek

Opis: This article has presented a technical concept for producing precisely desired Additive Manufactured (AM) metallic products using Artificial Intelligence (AI). Due to the stochastic nature of the metallic AM process, which causes a greater variance in product properties compared to traditional manufacturing processes, significant inaccuracies in metallurgical properties, as well as geometry, occur. The physics behind these phenomena are related to the melting process, bonding, cooling rate, shrinkage, support condition, part orientation. However, by controlling these phenomena, a wide range of product features can be achieved using the fabricating parameters. A variety of fabricating parameters are involved in the metal AM process, but an appropriate combination of these parameters for a given material is required to obtain an accurate and desired product. Zero defect product can be achieved by controlling these parameters by implementing Knowledge-Based System (KBS). A suitable combination of manufacturing parameters can be determined using mathematical tools with AI, considering the manufacturing time and cost. The knowledge required to integrate AM manufacturing characteristics and constraints into the design and fabricating process is beyond the capabilities of any single engineer. Concurrent Engineering enables the integration of design and manufacturing to enable trades based not only on product performance, but also on other criteria that are not easily evaluated, such as production capability and support. A decision support system or KBS that can guide manufacturing issues during the preliminary design process would be an invaluable tool for system designers. The main objective of this paper is to clearly describe the metal AM manufacturing process problem and show how to develop a KBS for manufacturing process determination.
Ključne besede: metallurgical properties, geometry, additive manufacturing, artificial intelligence, knowledge-based system
Objavljeno v DKUM: 25.09.2024; Ogledov: 0; Prenosov: 9
.pdf Celotno besedilo (1,46 MB)
Gradivo ima več datotek! Več...

5.
6.
0-form, 1-form, and 2-group symmetries via cutting and gluing of orbifolds
Mirjam Cvetič, Jonathan J. Heckman, Max Hübner, Ethan Torres, 2022, izvirni znanstveni članek

Opis: Orbifold singularities of M-theory constitute the building blocks of a broad class of supersymmetric quantum field theories (SQFTs). In this paper we show how the local data of these geometries determine global data on the resulting higher symmetries of these systems. In particular, via a process of cutting and gluing, we show how local orbifold singularities encode the 0-form, 1-form, and 2-group symmetries of the resulting SQFTs. Geometrically, this is obtained from the possible singularities that extend to the boundary of the noncompact geometry. The resulting category of boundary conditions then captures these symmetries and is equivalently specified by the orbifold homology of the boundary geometry. We illustrate these general points in the context of a number of examples, including five-dimensional (5D) superconformal field theories engineered via orbifold singularities, 5D gauge theories engineered via singular elliptically fibered Calabi-Yau threefolds, as well as four-dimensional supersymmetric quantum chromodynamics-like theories engineered via M-theory on noncompact G2 spaces.
Ključne besede: F-theory, compactifications, classification, singularities, instantons, geometry
Objavljeno v DKUM: 06.06.2024; Ogledov: 159; Prenosov: 10
.pdf Celotno besedilo (863,93 KB)
Gradivo ima več datotek! Več...

7.
8.
Geometry design and analysis of an electric bus for the interior ther-mal modelling
Costica Nituca, Gabriel Chiriac, Georgel Gabor, Ilie Nucǎ, Vadim Cazac, Marcel Burduniuc, 2021, izvirni znanstveni članek

Opis: The heating, ventilation and air-conditioning (HVAC) system represents the main auxiliary load for any type of bus. Being the most significant energy-consuming auxiliary load for the electric bus, it must be given special attention in an electric bus system design. To study the heat transfer and thermal optimization for passenger comfort in the electric bus computer-aided design (CAD) is used. The geometry of an electric bus interior is designed considering the main components of the vehicle: passenger cabin, driver’s cabin, windows, walls, and seats. Materials of the same type as those used in the real bus are considered for the geometry model. Based on the heat transfer theory, a thermal model and simulations are made for the heat transfer inside the electric bus. The simulated data are compared with measurement data, and based on these, it can be concluded that the thermal model of the electric bus can be validated and used further for a wide variety of thermal simulation types.
Ključne besede: heat transfer, electric bus, passenger comfort, geometry design, thermal modelling
Objavljeno v DKUM: 13.11.2023; Ogledov: 274; Prenosov: 6
.pdf Celotno besedilo (1,04 MB)
Gradivo ima več datotek! Več...

9.
Root bundles and towards exact matter spectra of F-theory MSSMs
Martin Bies, Mirjam Cvetič, Ron Donagi, Mingqiang Liu, Marielle Ong, 2021, izvirni znanstveni članek

Opis: Motivated by the appearance of fractional powers of line bundles in studies of vector-like spectra in 4d F-theory compactifications, we analyze the structure and origin of these bundles. Fractional powers of line bundles are also known as root bundles and can be thought of as generalizations of spin bundles. We explain how these root bundles are linked to inequivalent F-theory gauge potentials of a G(4)-flux. While this observation is interesting in its own right, it is particularly valuable for F-theory Standard Model constructions. In aiming for MSSMs, it is desired to argue for the absence of vector-like exotics. We work out the root bundle constraints on all matter curves in the largest class of currently-known F-theory Standard Model constructions without chiral exotics and gauge coupling unification. On each matter curve, we conduct a systematic "bottom"-analysis of all solutions to the root bundle constraints and all spin bundles. Thereby, we derive a lower bound for the number of combinations of root bundles and spin bundles whose cohomologies satisfy the physical demand of absence of vector-like pairs. On a technical level, this systematic study is achieved by a well-known diagrammatic description of root bundles on nodal curves. We extend this description by a counting procedure, which determines the cohomologies of so-called limit root bundles on full blow-ups of nodal curves. By use of deformation theory, these results constrain the vector-like spectra on the smooth matter curves in the actual F-theory geometry.
Ključne besede: F-theory, differential geometry, algebraic geometry
Objavljeno v DKUM: 16.10.2023; Ogledov: 349; Prenosov: 29
.pdf Celotno besedilo (979,06 KB)
Gradivo ima več datotek! Več...

10.
Statistics of limit root bundles relevant for exact matter spectra of F-theory MSSMs
Martin Bies, Mirjam Cvetič, Mingqiang Liu, 2021, izvirni znanstveni članek

Opis: In the largest, currently known, class of one quadrillion globally consistent F-theory Standard Models with gauge coupling unification and no chiral exotics, the vectorlike spectra are counted by cohomologies of root bundles. In this work, we apply a previously proposed method to identify toric base threefolds, which are promising to establish F-theory Standard Models with exactly three quark doublets and no vectorlike exotics in this representation. The base spaces in question are obtained from triangulations of 708 polytopes. By studying root bundles on the quark-doublet curve Cð3;2Þ1=6 and employing well-known results about desingularizations of toric K3 surfaces, we derive a triangulation independent lower bound Nˇ ð3Þ P for the number Nð3Þ P of root bundles on Cð3;2Þ1=6 with exactly three sections. The ratio Nˇ ð3Þ P =NP, where NP is the total number of roots on Cð3;2Þ1=6 , is largest for base spaces associated with triangulations of the eighth three-dimensional polytope Δ∘ 8 in the Kreuzer-Skarke list. For each of these Oð1015Þ threefolds, we expect that many root bundles on Cð3;2Þ1=6 are induced from F-theory gauge potentials and that at least every 3000th root on Cð3;2Þ1=6 has exactly three global sections and thus no exotic vectorlike quark-doublet modes.
Ključne besede: astrophysics, compactification, string theory models, geometry, higher-dimensional field theories, mathematical physics, quantum fields in curved spacetime, string phenomenology, supersymmetric models, topology
Objavljeno v DKUM: 16.10.2023; Ogledov: 317; Prenosov: 33
.pdf Celotno besedilo (444,13 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.09 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici