| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 9 / 9
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The architecture of a school system according to the theory of dynamical systems
Boris Aberšek, Janez Bregant, 2012, izvirni znanstveni članek

Opis: From the experience of recent years it seems clear that the existing educational system, as a whole, is perceived as an ailing system that fails to meet the needs of a major portion of the society it serves. Every aspect of the educational process must be studied and reconsidered in the light of new and different societal expectations. In the last decades we started with one school reform after the other, but it looks now that these changes had no positive impact whatsoever. Even worse, the school system was damaged afterwards. In this paper we will explore some possibilities how to improve it without facing these consequences. The main idea is, as a result of our latest research, that mathematical methods for describing and simulating could be very useful for predicting and simulating school systems without using a long term and complex empirical experimentation. The paper introduces the correlation between the dynamical mathematical calculus and the educational school system and elaborates to some extent the basic idea of using the former to predict the latter.
Ključne besede: architecture, mathematical modelling, school systems, dynamical systems
Objavljeno v DKUM: 19.12.2017; Ogledov: 1382; Prenosov: 133
.pdf Celotno besedilo (802,07 KB)
Gradivo ima več datotek! Več...

2.
Statistical Properties of Time-dependent Systems
Diego Fregolente Mendes De Oliveira, 2012, doktorska disertacija

Opis: In the dissertation I have dealt with time-dependent (nonautonomous) systems, the conservative (Hamiltonian) as well as dissipative, and investigated their dynamical and statistical properties. In conservative (Hamiltonian) time-dependent systems the energy is not conserved, whilst the Liouville theorem about the conservation of the phase space volume still applies. We are interested to know, whether the system can gain energy, and whether this energy can grow unbounded, up to infinity, and we are interested in the system's behaviour in the mean, as well as its statistical properties. An example of such a system goes back to the 1940s, when Fermi proposed the acceleration of cosmic rays (in the first place protons) upon the collisions with moving magnetic domains in the interstellar medium of our Galaxy, and in other galaxies. He then proposed a simple mechanical one-dimensional model, the so-called Fermi-Ulam Model (FUM), where a point particle is moving between two rigid walls, one being at rest and the other one oscillating. If the oscillation is periodic and smooth, it turned out in a nontrivial way, which is, in the modern era of understanding the chaotic dynamical systems, well understood, namely that the unbounded increasing of the energy (the so-called Fermi acceleration) is not possible, due to the barriers in form of invariant tori, which partition the phase space into regions, between which the transitions are not possible. The research has then been extended to other simple dyanamical systems, which have complex dynamics. The first was so-called bouncer model, in which a point particle bounces off the oscillating platform in a gravitational field. In this simple system the Fermi acceleration is possible. Later the research was directed towards two-dimensional billiard systems. It turned out that the Fermi acceleration is possible in all such systems, which are at least partially chaotic (of the mixed type), or even in a system that is integrable as static, namely in case of the elliptic billiard. (The circle billiard is an exception, because it is always integrable, as the angular momentum is conserved even in time-dependent case.) The study of time-dependent systems has developed strongly worldwide around the 1990s, in particular in 2000s, and became one of the central topics in nonlinear dynamics. It turned out, quite generally, but formal and implicit, in the sense of mathematical existence theorems, that in nonautonomous Hamilton systems the energy can grow unbounded, meaning that the system ``pumps" the energy from the environment with which it interacts. There are many open questions: how does the energy increase with time, in particular in the mean of some representative ensemble of initial conditions (typically the phase space of two-dimensional time-dependent billiards is four-dimensional.) It turned out that almost everywhere the power laws apply, empirically, based on the numerical calculations, but with various acceleration exponents. If the Fermi acceleration is not posssible, like e.g. in the FUM, due to the invariant tori, then after a certain time of acceleration stage the crossover into the regime of saturation takes place, whose characteristics also follow the power laws. One of the central themes in the dissertation is the study of these power laws, their critical exponents, analytical relationships among them, using the scaling analysis (Leonel, McClintock and Silva, Phys. Rev. Lett. 2004). Furthermore, the central theme is the question, what happens, if, in a nonautonomous Hamilton system which exhibits Fermi acceleration, we introduce dissipation, either at the collisions with the walls (collisional dissipation) or during the free motion (in-flight dissipation, due to the viscosity of the fluid or the drag force etc.). Dissipation typically transforms the periodic points into point attractors and chaotic components into chaotic attractors. The Fermi acceleration is always suppressed. We are interested in the phase portraits of
Ključne besede: nonlinear dynamics, dynamical systems, conservative and dissipative systems, time-dependent systems, Fermi acceleration, billiards, kicked systems, chaos, chaotic and periodic attractors, bifurcations, boundary crisis
Objavljeno v DKUM: 19.09.2012; Ogledov: 3259; Prenosov: 157
.pdf Celotno besedilo (16,09 MB)

3.
Fluctuating excitability : a mechanism for self-sustained information flow in excitable arrays
Matjaž Perc, 2007, izvirni znanstveni članek

Opis: We show that the fluctuating excitability of FitzHugh-Nagumo neurons, constituting a diffusively coupled excitable array, can induce phase slips that lead to a symmetry break yielding a preferred spreading direction of excitatory events, thus enabling persistent self-sustained and self-organized information flow in a periodic array long after a localized stimulus perturbation has sized. Possible oscillation frequencies of the information-carrying signal are expressed analytically, and necessary conditions for the phenomenon are derived. Our results suggest that cellular diversity in neural tissue is crucial for maintaining self-sustained and organized activity in the brain even in the absence of immediate stimuli, thus facilitating continuous evolution of its mechanisms for information retrieval and storage.
Ključne besede: physics, complex systems, dynamical systems, flexibility, chaos, chaotic systems, oscillations, perturbation
Objavljeno v DKUM: 07.06.2012; Ogledov: 2283; Prenosov: 97
URL Povezava na celotno besedilo

4.
Spatial coherence resonance in neuronal media with discrete local dynamics
Matjaž Perc, 2006, izvirni znanstveni članek

Opis: We study effects of spatiotemporal additive noise on the spatial dynamics of excitable neuronal media that is locally modelled by a two-dimensional map. We focus on the ability of noise to enhance a particular spatial frequency of the media in a resonant manner. We show that there exists an optimal noise intensity for which the inherent spatial periodicity of the media is resonantly pronounced, thus marking the existence of spatial coherence resonance in the studied system. Additionally, results are discussed in view of their possible biological importance.
Ključne besede: physics, complex systems, dynamical systems, noise, spatial dynamics, chaos, chaotic systems, chaos control, resonance
Objavljeno v DKUM: 07.06.2012; Ogledov: 2462; Prenosov: 106
URL Povezava na celotno besedilo

5.
Effects of small-world connectivity on noise-induced temporal and spatial order in neural media
Matjaž Perc, 2006, izvirni znanstveni članek

Opis: We present an overview of possible effects of small-world connectivity on noise-induced temporal and spatial order in a two-dimensional network of excitable neural media with FitzHugh-Nagumo local dynamics. Small-world networks are characterized by a given fraction of so-called long-range couplings or shortcut links that connect distant units of the system, while all other units are coupled in a diffusive-like manner. Interestingly, already a small fraction of these long-range couplings can have wide-ranging effects on the temporal as well as spatial noise-induced dynamics of the system. Here we present two main effects. First, we show that the temporal order, characterized by the autocorrelation of a firing-rate function, can be greatly enhanced by the introduction of small-world connectivity, whereby the effect increases with the increasing fraction of introduced shortcut links. Second, we show that the introduction of long-range couplings induces disorderof otherwise ordered, spiral-wave-like, noise-induced patterns that can be observed by exclusive diffusive connectivity of spatial units. Thereby, already a small fraction of shortcut links is sufficient to destroy coherent pattern formation in the media. Although the two results seem contradictive, we provide an explanation considering the inherent scale-free nature of small-world networks, which on one hand, facilitates signal transduction and thus temporal order in the system, whilst on the other hand, disrupts the internal spatial scale of the media thereby hindering the existence of coherent wave-like patterns. Additionally, the importance of spatially versus temporally ordered neural network functioning is discussed.
Ključne besede: physics, complex systems, dynamical systems, noise, chaos, chaotic systems, chaos control, resonance
Objavljeno v DKUM: 07.06.2012; Ogledov: 2006; Prenosov: 86
URL Povezava na celotno besedilo

6.
Stochastic resonance in soft matter systems : combined effects of static and dynamic disorder
Matjaž Perc, Marko Gosak, Samo Kralj, 2008, izvirni znanstveni članek

Opis: We study the impact of static and dynamic disorder on the phenomenon of stochastic resonance (SR) in a representative soft matter system. Due to their extreme susceptibility to weak perturbations, soft matter systems appear to be excellent candidates for the observation of SR. Indeed, we derive generic SR equations from a polymer-stabilized ferroelectric liquid crystal (LC) cell, which is a typical soft matter representative constituting one of the basic components in several electro-optic applications. We generalize these equations further in order to study an even broader class of qualitatively different systems, especially disclosing the influence of different types of static disorder and interaction ranges amongst LC molecules on the SR response. We determine the required conditions for the observation of SR in the examined system, and moreover, reveal that a random field type static disorder yields qualitatively different responses with respect to random dilution, random bond and spin glass universality classes. In particular, while the latter three decrease the level of dynamic disorder (Gaussian noise) warranting the optimal response, the former evokes exactly the opposite effect, hence increasing the optimal noise level that is needed to resonantly fine-tune the system's response in accordance with the weak deterministic electric field. These observations are shown to be independent of the system size and range of interactions, thus implying their general validity and potentially wide applicability also within other similar settings. We argue that soft matter systems might be particularly adequate as a base for different SR-based sensitive detectors and thus potent candidates for additional theoretical as well as experimental research in the presently outlined direction.
Ključne besede: dynamic systems, stochastic processes, stochastic resonance, nonlinear dynamical systems, soft-matter systems, static disorder, dynamic disorder
Objavljeno v DKUM: 07.06.2012; Ogledov: 2007; Prenosov: 85
URL Povezava na celotno besedilo

7.
Extended Lindstedt-Poincare method for non-stationary resonances of dynamical systems with cubic nonlinearit
Rudi Pušenjak, 2008, izvirni znanstveni članek

Opis: This paper presents the extended Lindstedt-Poincare (EL-P) method, which applies multiple time variables to treat non-stationary oscillations arising in dynamical systems with cubic nonlinearities due to the slowly varied excitation parameters. The method is applied extensively in research of non-stationary vibrations of clamped-hinged beams. Recognizing the aperiodic nature of non-stationary oscillations, the new formulation is presented by adding an additional, slow time scale beside time scales of the nonlinear system, which generally correspond to the incommensurate nonlinear frequencies of the response. Using this concept, a generalized approach of the study to the passage through fundamental, superharmonic and subharmonic resonances is presented in the paper. Effects of slowly varying excitation frequency and slowly varying excitation amplitude on the non-stationary oscillations are studied with the computation of deviations from the stationary response. Although the method is formulated for N-dof dynamical systems having weak cubic nonlinearities, it is applied for non-stationary vibrations, where two-mode shape approximation of damped and undamped clamped-hinged beam, respectively, is used and the simultaneous appearance of internal resonance is taken into account. Stability analysis of stationary solutions is performed and comparisons of stationary resonance curves by results obtained with the incremental harmonic balance (IHB) method show good agreement. The passage through the fundamental resonance of damped and undamped clamped-hinged beam, respectively, is investigated in detail.
Ključne besede: dynamical systems with cubic nonlinearities, nonlinear oscillations, nonstationary nonlinear oscillations, time scales, excitation frequency, resonance, Lindstedt-Poincare method
Objavljeno v DKUM: 01.06.2012; Ogledov: 2114; Prenosov: 36
URL Povezava na celotno besedilo

8.
Encyclopedia of complexity and systems science
slovar, enciklopedija, leksikon, priročnik, atlas, zemljevid

Opis: Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date.
Ključne besede: cellular automata, complex networks, computational nanoscience, ecological complexity, ergodic theory, fractals, game theory, granular computing, graph theory, intelligent systems, perturbation theory, quantum information science, system dynamics, traffic management, chaos, climate modelling, complex systems, dynamical sistems, fuzzy theory systems, nonlinear systems, soft computing, stochastic processes, synergetics, self-organization, systems biology, systems science
Objavljeno v DKUM: 01.06.2012; Ogledov: 2813; Prenosov: 126
URL Povezava na celotno besedilo

9.
Stochastic resonance on excitable small-world networks via a pacemaker
Matjaž Perc, 2007, izvirni znanstveni članek

Opis: We show that the correlation between the frequency of subthreshold pacemaker activity and the response of an excitable array is resonantly dependent on the intensity of additive spatiotemporal noise. Thereby, the effect of the underlying network, defining the interactions among excitable units, largely depends on the coupling strength. Only for intermediate coupling strengths is the small world property able to enhance the stochastic resonance, whereas for smaller and larger couplings the impact of the transition from diffusive to random networks is less profound. Thus, the optimal interplay between a localized source of weak rhythmic activity and the response of the whole array demands a delicate balance between the strength of excitation transfer and the effectiveness of the network structure to support it.
Ključne besede: stochastic resonance, small-world networks, cardiology, neurophysiology, nonlinear dynamical systems, spatiotemporal phenomena
Objavljeno v DKUM: 31.05.2012; Ogledov: 2198; Prenosov: 150
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.28 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici