| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 19
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Predicting corn moisture content in continuous drying systems using LSTM neural networks
Marko Simonič, Mirko Ficko, Simon Klančnik, 2025, izvirni znanstveni članek

Opis: As we move toward Agriculture 4.0, there is increasing attention and pressure on the productivity of food production and processing. Optimizing efficiency in critical food processes such as corn drying is essential for long-term storage and economic viability. By using innovative technologies such as machine learning, neural networks, and LSTM modeling, a predictive model was implemented for past data that include various drying parameters and weather conditions. As the data collection of 3826 samples was not originally intended as a dataset for predictive models, various imputation techniques were used to ensure integrity. The model was implemented on the imputed data using a multilayer neural network consisting of an LSTM layer and three dense layers. Its performance was evaluated using four objective metrics and achieved an RMSE of 0.645, an MSE of 0.416, an MAE of 0.352, and a MAPE of 2.555, demonstrating high predictive accuracy. Based on the results and visualization, it was concluded that the proposed model could be a useful tool for predicting the moisture content at the outlets of continuous drying systems. The research results contribute to the further development of sustainable continuous drying techniques and demonstrate the potential of a data-driven approach to improve process efficiency. This method focuses on reducing energy consumption, improving product quality, and increasing the economic profitability of food processing
Ključne besede: drying, moisture prediction, big data, artificial intelligence, LSTM
Objavljeno v DKUM: 21.03.2025; Ogledov: 0; Prenosov: 11
.pdf Celotno besedilo (2,99 MB)
Gradivo ima več datotek! Več...

2.
Towards a digital twin of primary drying in lyophilization using coupled 3-D equipment CFD and 1-D vial-scale simulations
Matej Zadravec, Efimia Metsi-Guckel, Blaž Kamenik, Johan Remelgas, Johannes G. Khinast, Nick Roscioli, Matthew Flamm, Harshil Renawala, Jeff Najarian, Atul Karande, Avik Sarkar, 2024, izvirni znanstveni članek

Opis: A digital twin of lyophilization units was developed to facilitate the scale-up of the lyophilization process from the laboratory to the commercial scale. Our focus was on ensuring successful technology transfer for manufacture of high-quality drug products. Traditionally, lyophilization models have been specific either to the equipment or to the vial. In this study, we integrated the equipment and the vial models in a way that they mutually influenced each other via boundary conditions (two-way coupling). We conducted two sets of calculations. Firstly, we performed steady-state simulations using Computational Fluid Dynamics (CFD) to simulate an ice slab test, which helped determine the equipment capability curve. Secondly, we carried out transient, coupled simulations using a coupled 3-D CFD and 1-D vial scale simulation model to mimic the primary drying phase in a lyophilizer. Using the coupled 3-D CFD and 1-D vial scale model, we were able to determine the product temperature, the sublimation rate and the cycle time based on the temporal and spatial conditions in the lyophilizer. The coupled approach was then applied to capture the effects of process disturbances and failure conditions in the lyophilizer, which enables a more robust process design.
Ključne besede: lyophilization, freeze-drying, sublimation
Objavljeno v DKUM: 13.03.2025; Ogledov: 0; Prenosov: 9
.pdf Celotno besedilo (9,42 MB)
Gradivo ima več datotek! Več...

3.
Nisin-loaded gelatin microparticles for the enhanced bioactivity of bacterial nanocellulose
Maša Hren, Janja Trček, Aleksandra Šakanović, Hristina Obradović, Mateja Erdani-Kreft, Silvo Hribernik, Selestina Gorgieva, 2025, izvirni znanstveni članek

Opis: Bacterial nanocellulose (BnC) is of immense importance in medicine, although its lack of bioactivity present intriguing issue. We propose a method to modify BnC with gelatin and nisin biomolecules, and explore their synergistic effect on the antimicrobial activity. Gelatin microparticles (without/with nisin loading) with a size ~0.5 μm and ~ 1.3 μm were prepared by spray drying and stabilised by dehydrothermal treatment. Modified BnC-based membranes supported the formation of biologically relevant minerals and were non-cytotoxic to human gingival fibroblast cells (HGF). The presence of gelatin microparticles improved the viability of HGF by approximately 20 %, due to the effect of gelatin alone, independent of the addition of nisin. BnC coated with a nisin/gelatin solution reduces the viability of HGF by about 20 %, but this negative effect is not observed by nisin coated gelatin microparticles. The cell viability of BnC membranes was above 90 % in both porcine and human urothelial cells. The antimicrobial activity study confirmed an inhibitory effect of membranes modified with nisin-coated microparticles or a gelatin/nisin solution against Staphylococcus aureus at a non-cytotoxic nisin dose (150 μg/mL). The study demonstrates the structural effects of gelatin and gelatin/nisin mixtures on the bioactivity of BnC and provides a rationale for the modification procedure.
Ključne besede: bacterial nanocellulose, gelatin, nisin, spray-drying, antimicrobial function, bioactivity
Objavljeno v DKUM: 10.03.2025; Ogledov: 0; Prenosov: 8
.pdf Celotno besedilo (7,52 MB)
Gradivo ima več datotek! Več...

4.
Slot‑die coating of cellulose nanocrystals and chitosan for improved barrier properties of paper
Ylenia Ruberto, Vera Vivod, Janja Juhant Grkman, Gregor Lavrič, Claudia Graiff, Vanja Kokol, 2024, izvirni znanstveni članek

Opis: Cellulose nanocrystals (CNCs) and chitosan (Cht) have been studied extensively for oxygen and water vapour barrier coatings in biodegradable, compostable or recyclable paper packaging. However, rare studies have been performed by using scalable, inexpensive, and fast continuous slot-die coating processes, and none yet in combination with fast' and high-throughput near-infrared (NIR) light energy drying. In this frame, we studied the feasibility of a moderately concentrated (11 wt%) anionic CNC and (2 wt%) cationic Cht coating (both containing 20 wt% sorbitol related to the weight of CNC/Cht), by using plain and pigment pre-treated papers. The effect of coating parameters (injection speed, dry thickness settings) were investigated on coating quantity (dry weight, thickness) and homogeneity (coverage), papers' structure (thickness, grammage, density), whiteness, surface wettability, barrier (air, oxygen and water vapour) properties and adhesion (surface strength). The coating homogeneity was dependent primarily on the suspensions' viscosity, and secondarily on the applied coating parameters, whereby CNCs could be applied at 1–2 times higher injection speeds (up to 80 mL/min) and versatile coating weights, but required a relatively longer time to dry. The CNCs thus exhibited outstanding air (4.2–1.5 nm/Pa s) and oxygen (2.7–1.1 cm3 mm/m2 d kPa) barrier performance at 50% RH and 22–33 g/m2 deposition, whereas on top deposited Cht (3–4 g/m2) reduced its wetting time and improved the water vapour barrier (0.23–0.28 g mm/m2 d Pa). The balanced barrier properties were achieved due to the polar characteristic of CNCs, the hydrophobic nature of Cht and the quantity of the applied bilayer coating that can provide sustainable paper-based packaging.
Ključne besede: paper, nanocellulose, chitosan, slot‑die coating, near-infrared (NIR) drying, barrier properties
Objavljeno v DKUM: 06.05.2024; Ogledov: 227; Prenosov: 18
.pdf Celotno besedilo (1,59 MB)
Gradivo ima več datotek! Več...

5.
6.
Vial wall effect on freeze-drying speed
Matjaž Ramšak, Matjaž Hriberšek, 2024, izvirni znanstveni članek

Opis: The vial wall thermal conductivity and thickness effect on freeze-drying speed is simulated. A 2D axisymmetric numerical simulation of Mannitol freeze-drying is employed using the boundary element method. The originality of the presented approach lies in the simulation of heat transfer in the vial walls as an additional computational domain in contrast to the typical methodology without a vial wall. The numerical model was validated using our measurements and the measurements from the literature. Increasing the glass vial thickness from 1 mm to 2 mm has been found as the major factor in primary drying time, increasing the gravimetrical Kv up to 20 % for all the simulated chamber pressures. The effect of thermal conductivity was simulated using a polymer and aluminium vial replacing the standard glass vial of the same thickness. The polymer vial‘s decreased Kv value is 5.6 % at a low chamber pressure of 50 mTorr, and 12.2 % at 400 mTorr, which is in excellent agreement with the experiment. Using higher conductivity materials, for example, aluminium, only 3.7 % and 2.3 % Kv increase were computed for low and high chamber pressures respectively.
Ključne besede: freeze-drying, lyophilization speedup, vial heat conductivity, vial wall thickness, boundary element method
Objavljeno v DKUM: 16.04.2024; Ogledov: 264; Prenosov: 36
.pdf Celotno besedilo (1,88 MB)
Gradivo ima več datotek! Več...

7.
8.
Green Processing of Neat Poly(lactic acid) Using Carbon Dioxide under Elevated Pressure for Preparation of Advanced Materials : A Review (2012–2022)
Stoja L. Milovanović, Ivana Lukic, Gabrijela Horvat, Zoran Novak, Sulamith Frerich, Marcus Petermann, Carlos A. García-González, 2023, pregledni znanstveni članek

Opis: This review provides a concise overview of up-to-date developments in the processing of neat poly(lactic acid) (PLA), improvement in its properties, and preparation of advanced materials using a green medium (CO2 under elevated pressure). Pressurized CO2 in the dense and supercritical state is a superior alternative medium to organic solvents, as it is easily available, fully recyclable, has easily tunable properties, and can be completely removed from the final material without post-processing steps. This review summarizes the state of the art on PLA drying, impregnation, foaming, and particle generation by the employment of dense and supercritical CO2 for the development of new materials. An analysis of the effect of processing methods on the final material properties was focused on neat PLA and PLA with an addition of natural bioactive components. It was demonstrated that CO2-assisted processes enable the control of PLA properties, reduce operating times, and require less energy compared to conventional ones. The described environmentally friendly processing techniques and the versatility of PLA were employed for the preparation of foams, aerogels, scaffolds, microparticles, and nanoparticles, as well as bioactive materials. These PLA-based materials can find application in tissue engineering, drug delivery, active food packaging, compostable packaging, wastewater treatment, or thermal insulation, among others.
Ključne besede: aerogels, drying, foaming, impregnation, particle generation, PLA
Objavljeno v DKUM: 06.02.2024; Ogledov: 395; Prenosov: 31
.pdf Celotno besedilo (5,02 MB)
Gradivo ima več datotek! Več...

9.
The effect of drying methods and extraction techniques on oleuropein content in olive leaves
Darija Cör Andrejč, Bojan Butinar, Željko Knez, Kaja Tomažič, Maša Knez Marevci, 2022, izvirni znanstveni članek

Opis: Increased demand for olive oil has caused higher quantities of byproducts in olive processing, such as olive leaves, olive skins, and vegetation water. It is well known that olive leaves contain several phenolic compounds, including secoiridoids. Oleuropein is the major secoiridoid in olive leaves. Oleuropein has been found to exhibit antioxidative, antimicrobial, antiviral, and antiatherogenic activities. We studied the effect of extraction techniques and drying methods on oleuropein content in olive leaves of Istrska belica and Lecino cultivar. Three different procedures of drying were used: at room temperature, at 105 °C, and freeze drying. Ethanol-modified supercritical extraction with carbon dioxide, conventional methanol extraction, and ultrasonic extraction with deep eutectic solvent were performed. Antioxidant activity was determined, as well as methanolic and supercritical extracts. The presence of olive polyphenols was confirmed by the HPLC method.
Ključne besede: olive leaves, drying, different extraction techniques, oleuropein
Objavljeno v DKUM: 10.08.2023; Ogledov: 352; Prenosov: 411
.pdf Celotno besedilo (1,22 MB)
Gradivo ima več datotek! Več...

10.
Physicochemical properties of gold nanoparticles for skin care creams
Peter Majerič, Zorana Jović, Tilen Švarc, Žiga Jelen, Andrej Horvat, Djuro Koruga, Rebeka Rudolf, 2023, izvirni znanstveni članek

Opis: Gold nanoparticles (AuNPs) have now been used in skin care creams for several years, with marketed anti-aging, moisturizing, and regenerative properties. Information on the harmful effects of these nanoparticles is lacking, a concern for the use of AuNPs as cosmetic ingredients. Testing AuNPs without the medium of a cosmetic product is a typical method for obtaining this information, which is mainly dependent on their size, shape, surface charge, and dose. As these properties depend on the surrounding medium, nanoparticles should be characterized in a skin cream without extraction from the cream’s complex medium as it may alter their physicochemical properties. The current study compares the sizes, morphology, and surface changes of produced dried AuNPs with a polyvinylpyrrolidone (PVP) stabilizer and AuNPs embedded in a cosmetic cream using a variety of characterization techniques (TEM, SEM, DLS, zeta potential, BET, UV–vis). The results show no observable differences in their shapes and sizes (spherical and irregular, average size of 28 nm) while their surface charges changed in the cream, indicating no major modification of their primary sizes, morphology, and the corresponding functional properties. They were present as individually dispersed nanoparticles and as groups or clusters of physically separated primary nanoparticles in both dry form and cream medium, showing suitable stability. Examination of AuNPs in a cosmetic cream is challenging due to the required conditions of various characterization techniques but necessary for obtaining a clear understanding of the AuNPs’ properties in cosmetic products as the surrounding medium is a critical factor for determining their beneficial or harmful effects in cosmetic products.
Ključne besede: gold nanoparticles, ultrasonic spray pyrolysis, freeze drying, characterization, creams
Objavljeno v DKUM: 19.04.2023; Ogledov: 769; Prenosov: 79
.pdf Celotno besedilo (5,34 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.26 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici