1. High-performance deployment operational Data analytics of pre-trained multi-label classification architectures with differential-evolution-based hyperparameter optimization (AutoDEHypO)Teo Prica, Aleš Zamuda, 2025, izvirni znanstveni članek Opis: This article presents a high-performance-computing differential-evolution-based hyperparameter optimization automated workflow (AutoDEHypO), which is deployed on a petascale supercomputer and utilizes multiple GPUs to execute a specialized fitness function for machine learning (ML). The workflow is designed for operational analytics of energy efficiency. In this differential evolution (DE) optimization use case, we analyze how energy efficiently the DE algorithm performs with different DE strategies and ML models. The workflow analysis considers key factors such as DE strategies and automated use case configurations, such as an ML model architecture and dataset, while monitoring both the achieved accuracy and the utilization of computing resources, such as the elapsed time and consumed energy. While the efficiency of a chosen DE strategy is assessed based on a multi-label supervised ML accuracy, operational data about the consumption of resources of individual completed jobs obtained from a Slurm database are reported. To demonstrate the impact on energy efficiency, using our analysis workflow, we visualize the obtained operational data and aggregate them with statistical tests that compare and group the energy efficiency of the DE strategies applied in the ML models. Ključne besede: high-performance computing, operational data analytics, energy efficiency, machine learning, AutoML, differential avolution, optimization Objavljeno v DKUM: 29.05.2025; Ogledov: 0; Prenosov: 2
Celotno besedilo (1,61 MB) |
2. Comparing algorithms for predictive data analytics : magistrsko deloGoran Kirov, 2024, magistrsko delo Opis: The master’s degree thesis is composed of theoretical and practical parts. The theoretical part describes the basics of predictive data analytics and machine learning algorithms for classification such as Logistic Regression, Decision Tree, Random Forest, SVM, and KNN. We also describe different evaluation metrics such as Recall, Precision, Accuracy, F1 Score, Cohen’s Kappa, Hamming Loss, and Jaccard Index that are used to measure the performance of these algorithms. Additionally, we record the time taken for the training and prediction processes to provide insights into algorithm scalability.
The key part master’s thesis is the practical part that compares these algorithms with a self-implemented tool that shows results for different evaluation metrics on seven datasets. First, we describe the implementation of an application for testing where we measure evaluation metrics scores. We tested these algorithms on all seven datasets using Python libraries such as scikit-learn. Finally, w Ključne besede: data analytics, machine learning, classification, evaluation metrics Objavljeno v DKUM: 15.01.2025; Ogledov: 0; Prenosov: 59
Celotno besedilo (2,68 MB) |
3. BIG DATA TEHNOLOGIJE ZA ANALIZO VELIKE KOLIČINE POSLOVNIH PODATKOVJana Medved, 2014, magistrsko delo Opis: S tem, ko naš svet postaja vedno bolj povezan in naše aktivnosti vse bolj digitalizirane, postajajo podatki bogatejši, raznoliki in na voljo kadarkoli. Organizacije izkoriščajo te ogromne količine podatkov za natančnejše prilagoditve sistemov, podporo odločanju in razvoj proizvodov in storitev. V magistrskem delu smo predstavili karakteristike Big Data, njegove prednosti in izzive s katerimi se soočajo organizacije pri analiziranju ogromnih količin podatkov, osredotočili pa smo se na tehnologije Big Data analitike in v povezavi s tem na vizualizacijo Big Data - kot primer je predstavljena rešitev SAS Visual Analytics.
Organizacije uporabljajo Big Data tehnologije, da dobijo odgovore na pomembna vprašanja z analizo podatkov takoj, torej v realnem času ter ne rabijo čakati na rezultate dneve, tedne ali celo mesece. Največja prednost Big Data tehnologij je tako pospešitev časa prejema rezultatov analize ter posledično hitrejše sprejemanje odločitev.
Kot tehnologije Big Data analitike smo predstavili delovanje Hadoopa ter značilnosti NoSQL podatkovnih baz in masivnih paralelnih analitičnih podatkovnih baz. Prav tako smo predstavili visoko zmogljivo analitiko, ki s hitrostjo spreminja način obdelave in izkoriščanje vrednosti Big Data v organizacijah ter v povezavi z njo analitiko v pomnilniku (angl. in-memory analytics), ki omogoča organizacijam hitrejše odločanje, natančnejše rezultate in vzpostavitev zanesljive ter prilagodljive analitične infrastrukture.
Z Big Data se povečuje tudi potreba po bolj napredni podatkovni vizualizaciji. Predstavitev informacij na razumljiv način, je glavni izziv analiziranja podatkov, če želimo, da rezultati privedejo do konkretnih ukrepov. Rezultati analiz in vizualizacija podatkov sta učinkovita kombinacija za predstavitev in deljenje informacij v podjetju. Rešitev, ki podpira vizualizacijo podatkov, izbranih za analizo, je lahko zelo koristna, sploh kadar lahko pomaga uporabniku izbrati najprimernejšo vizualizacijo za določen nabor podatkov. Takšna rešitev je SAS Visual Analytics, zmogljivo orodje raziskovanja podatkov za razkritje trendov in skritih priložnosti. Združuje analitiko, in-memory arhitekturo, raziskovanje podatkov, podporo Hadoopa in različne možnosti uporabe informacij. Ključne besede: Big Data, vizualizacija, poslovna analitika, visoko zmogljiva analitika, SAS Visual Analytics Objavljeno v DKUM: 13.10.2014; Ogledov: 4047; Prenosov: 691
Celotno besedilo (1,50 MB) |