SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The analysis of permanent deformations of repeatedly loaded gravels from the Mura region
Gregor Ficko, Bojan Žlender, 2005, izvirni znanstveni članek

Opis: This contribution presents the results of the analysis of permanent deformations of gravel in the Mura region under repeated loading. The purpose of the analysis is to forecast the development of permanent normalised axial deformations ▫$/epsilon_1^{p*}$▫ regarding the number of loading cycles N and appurtenant stress states during cycling loading. The analysis used the results of tests performed by ZAG Ljubljana and Faculty of Civil Engineering and Geodesy (FGG) of the University of Ljubljana [1]. The analysis considers five types of stonematerials of different quantity of crushed grains in the mixture and of different water contents. Four types of stone materials are mixtures of different portions of crushed grains larger than 2 mm (Dcr = 87.7 %, 58.9 %, 32.6 % in 0 %), and of the water content around w = wopt - 2%. The stone material with portions of crushed grains larger than 2 mm Dcr= 58.9 % is analysed also for water content w = wopt + 0.7 %. The results of the analysis are deformations expressed as a function of the number of loading cycles N, and a spherical component of the repeated loading p and a distortional component of the repeated loading q. The results can be presentedas deformation surfaces in the ▫$/epsilon_1^{p*}$▫ - p - q space for an arbitrary number of cycles N. The relation between the spherical stress component p and the distortional stress component q, at arbitrary values of axial permanent deformations ▫$/epsilon_1^{p*}$▫, gives a failure envelope, and the so called deformation envelopes in the p - q space. The failure envelopes and deformation envelopes are given separately for five types of stone material. The deformation envelopes are low at small values of the axial permanent deformation ▫$/epsilon_1^{p*}$▫ When permanent axial deformations grow, the permanent deformation approaches the failure envelopes. The failure envelopes for individual types of stone material agree with research results performed by [1]. The analysis of permanent deformations also shows their dependence on the portion of crushed material Dcr in the mixture of crushed and uncrushed stone material. The deformation envelope for uncrushed stone material is situated in the lowest position, regarding the portion of crushed material in the mixture. With an increased portion of crushed material in the mixture of crushed and uncrushed stone material, the deformation envelope is also higher, similarly to the lawfulness of failure envelopes. The relation of failure and deformation envelopes is mathematically established as a function of the portion of crushed grains larger than 2 mm. The comparison of stone material results for different water contents shows that a minimal increase of water content above the optimal one essentially increases deformation.
Ključne besede: building materials, Mura river gravel, cyclic triaxial tests, granular base material, permanent deformation, normalized axial permanent deformation
Objavljeno: 01.06.2012; Ogledov: 818; Prenosov: 12
.pdf Celotno besedilo (988,09 KB)

2.
Cyclic liquefaction potential of lacustrine carbonate from Julian Alps
Bojan Žlender, Stanislav Lenart, izvirni znanstveni članek

Opis: This paper presents the liquefaction studies of lacustrine carbonate silt from the Julian Alp landslide Stože. Geological conditions of the region and geomechanical characteristics of the ground were investigated. The research project was performed with the intention to determine the effects of cyclic loading on lacustrine carbonate silt. Investigation with 77 cyclic triaxial tests was performed on universal triaxial apparatus Wykeham Farrance UP 100 TR, in the Laboratory of soil mechanics, Faculty of Civil Engineering, University of Maribor. The essential equipment comprises cylindrical triaxial apparatus with a cell, a press with appurtenant electro-mechanic equipment, measuring equipment, and computer hardware and software equipment. Specimens with dimensions of height = 140 mm and diameter = 70 mm were saturated, then subjected to the arbitrary initial isotropic stress state and consolidated with vertical and radial draining, and then loaded with distortional loading of chosen dynamical axial force (frequency f = 1 Hz). A set of tests with a spectrum of different stress states and cyclic loading were performed. This research showed that lacustrine carbonate silt is a highly sensitive material.The resistance to liquefaction was somewhat higher than that of typical clean sand, but a perceivable excess pore pressure generation, which causes the decrease of strength parameters, was noticed. Test results of cyclic triaxial tests indicate dynamic characteristics of lacustrine carbonate silt and wide applicability of the test method.
Ključne besede: civil engineering, geomechanics, soil investigations, lacustrine carbonate silt, cyclic triaxial tests, liquefaction potential, shear modulus, damping ratio, cyclic stress ratio, pore pressure ratio
Objavljeno: 15.05.2018; Ogledov: 91; Prenosov: 5
.pdf Celotno besedilo (1,53 MB)

Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici