| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 5 / 5
First pagePrevious page1Next pageLast page
1.
Extraction of lutein from Marigold flower petals - Experimental kinetics and modelling
Maša Hojnik Niderl, Mojca Škerget, Željko Knez, 2008, original scientific article

Abstract: The extraction kinetics behaviour of lutein from Marigold flower petals and simultaneous alkali hydrolysis has been studied. Extraction was carried out by varying following operating conditions: type of organic solvent, temperature, ratio liquid: material, concentration of alkali solution, and particle size of plant material. Experimental extraction curves were analysed with a mathematical model derived from Fick's second law. The extraction of lutein appeared to be governed by slow and fast diffusion processes. Results showed that the intra-particle diffusion was the rate-governing step of the extraction process, and that the chosen model gives very good approximation of experimental data.
Keywords: lutein, marigold, conventional extraction, diffusivity, mass transfer
Published: 31.05.2012; Views: 1276; Downloads: 65
URL Link to full text

2.
Separation of parthenolide from feverfew: performance of conventional and high-pressure extraction techniques
Lucija Čretnik, Mojca Škerget, Željko Knez, 2005, original scientific article

Abstract: In present work the extraction of feverfew flower heads was performed using supercritical carbon dioxide at pressures from 200 to 800 bar and at temperatures of 40, 60 and 80 °C. For comparison, the conventional extractionswith organic solvents have been performed. Dry feverfew flower heads were used as starting material. Supercritical fluid extraction (SFE) wasperformed using a semi continuous flow apparatus in a laboratory and pilot scale. The influence of process parameters on the total yield and amount of parthenolide isolated was investigated. Dynamic behaviour of the extraction runs followed by single-step separation was analysed by a mathematical model for initial constant rate extraction period and the subsequent time-dependant diffusion controlling mass transfer rate period. In order to concentrate the obtained extract in parthenolide, a two-step separation was employed.
Keywords: chemical processing, high pressure extraction, conventional extraction, supercritical CO2, parthenolide, feverfew, extraction rate, mass transfer
Published: 01.06.2012; Views: 1085; Downloads: 59
URL Link to full text

3.
Isolation and Characterisation of Flavonoids From Citrus Peels
Katja Makovšek, 2013, doctoral dissertation

Abstract: Citrus flavonoids are very interesting for food and pharmaceutical industry since they possess many antioxidant properties and biological activities. Mandarin peels represent an important source of hesperidin and polymethoxy flavones nobiletin and tangeretin. Pommelo peels represent an important source of naringin that can be used as precursor for naringin dihdydro-2,3-chalcone artificial sweetener. Since pommelo peels possess good antioxidant and antimicrobial properties, their extracts are very interesting products for food industry. Therefore isolation of flavonoid from mandarin and pommelo peels is an important topic of investigations. The investigation of the doctoral dissertation is divided in four parts. The first part is focused on the determination of the optimal conditions for the isolation of hesperidin and naringin from mandarin and pommelo peels by conventional extraction. The optimal conditions and the influence of extraction parameters are determined by Taguchi methodology. Very good isolation efficiency of hesperidin, 61.3 mg HES from 1 g of mandarin peels, was obtained by 70 % acetone solution and extraction conditions: 60 °C, 90 min, material to solvent ratio 1/50 g/mL and 3 stages of extraction. The highest amount of naringin, 32.8 mg NAR were isolated from 1 g of material at conditions: conventional extraction, 120 min, albedo, 60 % ethanol, material to solvent ratio 1/50 g/mL and 60 °C. The simple procedure of conventional extraction shows results comparable to more sophisticated methods such as extraction with microwave and ultrasound. Taguchi experimental design was proved to be an efficient methodology to determine the optimal conditions and the parameters that significantly influence product properties. The second part of the investigation focuses on the characterization of mandarin and pommelo peel extracts and their antioxidant properties. Radical scavenging activity against DPPH and antioxidant capacity of lipid soluble and water soluble compounds were determined for mandarin and pommelo extracts. Taguchi experimental design was applied for determination of the influence of extraction parameters on antioxidant properties. The optimal conditions to prepare extracts with high antioxidant properties were also determined. In the third part the investigation focuses on the concentration and separation of citrus flavonoids by extraction with supercritical fluids. Supercritical CO2 was applied for the separation of polymethoxylated flavones (PMF) and flavanone glycoside from mandarin peels. The optimal conditions and the parameter influence on the separation were determined by using Taguchi experimental design. The influence of supercritical fluid extraction parameters on material pre-treatment and isolation of flavonoids was studied. These investigations show that supercritical CO2 is a potential solvent for isolation and separation of PMF from mandarin peels. The fourth and last part of the investigation focuses on the concentration of flavonoids in extract solutions. Since membrane separation processes are very interesting concentration methods in industry, microfiltration, ultrafiltration, nanofiltration and revese osmosis were used for concentration of mandarin and pommelo peel extract solutions. Microfiltration and ultrafiltration could be used in the separation steps after extraction, since they did not influence the amount of dry material and valuable compounds in tested solutions. Reverse osmosis and nanofiltration were shown as useful methods for separation of solvent from extract solutions.
Keywords: Flavonoids, hesperidin, naringin, citrus peels, mandarin (Citrus reticulata), pommelo (Citrus maxima), conventional extraction, supercritical fluid extraction, membrane separation processes, Taguchi experimental design
Published: 22.04.2013; Views: 2473; Downloads: 270
.pdf Full text (10,49 MB)

4.
“Thermodynamic and physical properties for high pressure process design”
Maša Knez Hrnčič, 2014, doctoral dissertation

Abstract: The thesis is comprised of three main categories. The first part of dissertation covers investigations of phase equilibria of compounds from natural materials in conventional and also non conventional supercritical fluids. In details, the impact of pressure and/or temperature on the system behaviour (miscibility, solubility, phase inversion) is investigated, quantitative and qualitative analyses to evaluate and identify compounds contained after performing preliminary extraction experiments from different natural tissues are presented. The impact of operating parameters (pre-treatment of the raw material with SFE; different extraction solvents: propane, CO2, non conventional SCFs; different extraction temperatures and pressures) on extraction kinetics is observed. Following substances were taken into consideration: vanillins, caffeine, carnosoic acid extract and lecithin. Second part of dissertation covers studies of phase equilibria of the systems bio oil/gas, which is crucial in biorefinery process design. In this part of dissertation, which covers studies of phase equilibria of binary and ternary systems, the impact of pressure and/or temperature on the system behaviour (miscibility, solubility, phase inversion) for binary system bio oil/supercritical fluid (bio oil/CO2) and (bio oil/H2) was studied. Additionally, phase behaviour of ternary systems of (bio oil/diesel/CO2) and (bio oil/tail water/CO2) under the impact of pressure and/or temperature is observed. These data are of a high importance for bio refineries as an important part of necessary sustainable development. In recent years, studies on biodiesel synthesis have focused on development of process intensification technologies to resolve some of these issues. Fundamental data to design fractionation process of components of bio oil are crucial for an efficient hydrogenation process of bio oil. In the third part of dissertation observation of phase equilibria and determination of the parameters like diffusion coefficient, density and viscosity for the systems polymer/CO2 at elevated pressures is investigated. An overview of different methods applied to determine the parameters like diffusion coefficient, density and viscosity of the systems polymer (PEG)/CO2 at elevated pressures is offered. Observation of phase equilibria of the binary system PEG/CO2, determination of the impact of pressure and/or temperature on the system behaviour (miscibility, solubility, phase inversion), determination of thermodynamically and physically properties of the system with new applicative methods and finally, comparison of the results obtained by different methods is provided. The interfacial tension (IFT) at the (PEG)/CO2 interface has been determined by using an experimental technique developed to study the interfacial interactions of the liquids in equilibrium with gas in a glass-windowed equilibrium cell by the means of Capillary Rise (CR) method. Advantages and disadvantages of methods that were applied are exposed and discussed.
Keywords: phase equilibria, natural materials, conventional and non conventional supercritical fluids, extraction, bio oil, data for biorefinery process design, systems polymer (PEG)/CO2, diffusion coefficient, density, viscosity, surface tension, Capillary Rise (CR) method.
Published: 28.10.2014; Views: 1388; Downloads: 221
.pdf Full text (4,46 MB)

5.
Influence of process parameters on the extraction of flavanones from mandarin peel
Katja Makovšek, Željko Knez, Mojca Škerget, 2012, original scientific article

Abstract: Flavanones are an important group of flavonoids that are characteristic for citrus. In the present work isolation of flavanones from mandarin peel was performed by conventional extraction using water, ethanol, acetone and aqueous solutions of acetone and ethanol. The extracts were analysed on the content and composition of flavanones. Furthermore the DPPH radical scavenging activity of extracts was determined. Finally, the influence of extraction parameters (particle size, extraction temperature, extraction time,material to solvent ratio, number of extraction stages and type of solvent) on the yield and the efficiency of extraction were determined by Plackett-Burman experimental design. The results showed that 70% aqueous solution of acetone was the most efficient solvent for isolation of flavanones from mandarin peel. The main flavanones present in the obtained extracts were hesperidin (HES) and narirutin (NRT). The number of extraction stages influenced the yield of extraction, type of solvent influenced the hesperidin extraction efficiency and particle size of material influenced the narirutin extraction efficiency.
Keywords: conventional extraction, mandarin peel, flavanone, hesperidin, narirutin, Plackett-Bauman experimental design
Published: 10.07.2015; Views: 664; Downloads: 20
.pdf Full text (231,88 KB)
This document has many files! More...

Search done in 0.08 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica