SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Using neural networks in the process of calibrating the microsimulation models in the analysis and design of roundabouts in urban areas
Irena Ištoka Otković, 2011, doktorska disertacija

Opis: The thesis researches the application of neural networks in computer program calibration of traffic micro-simulation models. The calibration process is designed on the basis of the VISSIM micro-simulation model of local urban roundabouts. From the five analyzed methods of computer program calibration, Methods I, II and V were selected for a more detailed research. The three chosen calibration methods varied the number of outgoing traffic indicators predicted by neural networks and a number of neural networks in the computer program calibration procedure. Within the calibration program, the task of neural networks was to predict the output of VISSIM simulations for selected functional traffic parameters - traveling time between the measurement points and queue parameters (maximum queue and number of stopping at the roundabout entrance). The Databases for neural network training consisted of 1379 combinations of input parameters whereas the number of output indicators of VISSIM simulations was varied. The neural networks (176 of them) were trained and compared for the calibration process according to training and generalization criteria. The best neural network for each calibration method was chosen by using the two-phase validation of neural networks. The Method I is the calibration method based on calibration of a traffic indicator -traveling time and it enables validation related to the second observed indicator – queue parameters. Methods II and V connect the previously described calibration and validation procedures in one calibration process which calibrates input parameters according to two traffic indicators. Validation of the analyzed calibration methods was performed on three new sets of measured data - two sets at the same roundabout and one set on another location. The best results in validation of computer program calibration were achieved by the Method I which is the recommended method for computer program calibration. The modeling results of selected traffic parameters obtained by calibrated VISSIM traffic model were compared with: values obtained by measurements in the field, the existing analysis methods of operational roundabouts characteristics (Lausanne method, Kimber-Hollis, HCM) and modeling by the uncalibrated VISSIM model. The calibrated model shows good correspondence with measured values in real traffic conditions. The efficiency of the calibration process was confirmed by comparing the measured and modeled values of delays, of an independent traffic indicator that was not used in the process of calibration and validation of traffic micro-simulation models. There is also an example of using the calibrated model in the impact analysis of pedestrian flows on conflicting input and output flows of vehicles in the roundabout. Different traffic scenarios were analyzed in the real and anticipated traffic conditions.
Ključne besede: traffic models, traffic micro-simulation, calibration of the VISSIM model, computer program calibration method, neural networks in the calibration process, micro-simulation of roundabouts, traffic modeling parameters, driving time, queue parameters, delay
Objavljeno: 02.06.2011; Ogledov: 3432; Prenosov: 233
.pdf Celotno besedilo (13,21 MB)

David Potočnik, Bojan Dolšak, Miran Ulbin, 2013, izvirni znanstveni članek

Opis: Although the designing of cutting-dies is a complex and experience-based process, it is poorly supported by conventional 3D CAD software. Thus, the majority of design activities, including the (re)modeling of those cutting die-components that are directly responsible for performing shaping operations on a sheet-metal stamping part, traditionally still need to be carried-out repetitively, separately, and manually by the designer. In order to eliminate some of these drawbacks and upgrade the capabilities of conventional 3D CAD software, this paper proposes a new methodology for the development of a parametric system capable of automatically performing a (re)modeling process of compound washer diesć cutting-components. The presented methodology integrates CATIA V5 built-in modules, including Part Design, Assembly Design and Knowledge Advisor, publication mechanism, and compound cutting die-design knowledge. The system developed by this methodology represents an 'intelligent' assembly template composed of two modules 'GAJA1' and 'GAJA2', respectively. 'GAJA1' is responsible for the direct input of the die-design problem regarding the shape, dimensions and material of the stamping part, its extraction in the form of geometric features, and the transferring of relevant design parameters and features to the module 'GAJA2'. 'GAJA2' interprets the current values for the input parameters and automatically performs the modeling process of cutting die-components, using die-design knowledge and the company's internal design and manufacturing standards. Experimental results show that the use of this system significantly shortens the modeling-time for cutting the die-components, improves the modeling-quality, and enables the training of inexperienced designers.
Ključne besede: parametrično modeliranje, rezalna orodja, računalniško podprti sistemi, inteligentno računalniško podprto konstruiranje, parametric modeling, cutting dies, computer-aided systems, knowledge-based design
Objavljeno: 10.07.2015; Ogledov: 1433; Prenosov: 14
URL Celotno besedilo (0,00 KB)

Iskanje izvedeno v 0.02 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici