| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Computer Modelling of Porous Composite Structures with Advanced Pore Morphology
Aljaž Kovačič, 2016, doktorska disertacija

Opis: Advanced pore morphology (APM) structures are composite metal foams, which are assembled from a large number of small spherical elements with cellular structure, and are bonded into a composite with polymeric adhesive. The result of such composition is a wide spectrum of achievable mechanical behaviour in APM structures. To explore their full potential, efficient computational models are needed, which allow for simple parameter variation. Unfortunately, the current computer models do not allow for efficient simulations of porous composite structures with advanced pore morphology, as they employ complex discretisation approaches. A new approach to simulation is presented in this work, based on the discrete particle method (DPM), where every element of APM structure is discretised with a single node. This enables more efficient simulations of APM structures, while still allowing for simple variation of structural parameters. The DPM method was augmented with constitutive models of normal and tangential contact behaviour of APM elements and bonds between them, which were formulated based on an extensive experimental study of APM structure's geometry and mechanical behaviour. Consequently, the models enable simulations of large APM structure's behaviour by modelling the contact behaviour of individual elements. The implementation of new models was verified on a set of analytically solvable examples, and the accuracy of the models was validated with very good correspondence between computational and experimental results. Moreover, the models were validated on a wide set of examples, also taking into account the various strain rates and the absence of the bonds. The applicability of new models was demonstrated in a comprehensive parametrical study, where the influential structural parameters and properties were identified for low and high strain rate deformations. The study also demonstrated the possibility of customising the mechanical behaviour with property gradation, and with introduction of regular, as well as geometrically complex APM element assemblies. The possibility of coupled discrete particle method and finite element method simulations was also addressed. The newly developed models represent a breakthrough in the field of computational investigation of APM structures, and provide for simpler and more efficient investigations of APM structures in the future.
Ključne besede: Metal foams, advanced pore morphology, composite materials, mechanical properties, contact modelling, discrete particle methods, computer simulations
Objavljeno v DKUM: 11.03.2016; Ogledov: 1816; Prenosov: 144
.pdf Celotno besedilo (44,29 MB)

2.
Crack tip shielding or anti-shielding due to smooth and discontinuous material inhomogeneities
N.K. Simha, Franz Dieter Fischer, Otmar Kolednik, Jožef Predan, G.X. Shan, 2005, izvirni znanstveni članek

Opis: This paper describes a theoretical model and related computational methods forexamining the influence of inhomogeneous material properties on the crack driving force in elastic and elastic-plastic materials. Following the configurational forces approach, the crack tip shielding or anti-shielding dueto smooth (e.g. graded layer) and discontinuous (e.g. bimaterial interface)distributions in material properties are derived. Computational post-processing methods are described to evaluate these inhomogeneity effects.The utility of the theoretical model and computational methods is demonstrated by examining a bimaterial interface perpendicular to a crack in elastic and elastic-plastic compact tension specimens.
Ključne besede: fracture mechanics, fracture toughness, composite materials, layered material, inhomogeneity, cracks, finite element method, elastic bimaterials
Objavljeno v DKUM: 01.06.2012; Ogledov: 1769; Prenosov: 80
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici