| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 19
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Synthesis of Ni/Y2O3 nanocomposite through USP and lyophilisation for possible use as coating
Tilen Švarc, Srečko Stopić, Žiga Jelen, Matej Zadravec, Bernd Friedrich, Rebeka Rudolf, 2022, izvirni znanstveni članek

Opis: The Ni/Y2O3 catalyst showed high catalytic activity. Based on this, the aim of this study was to create Ni/Y2O3 nanocomposites powder with two innovative technologies, Ultrasonic Spray Pyrolysis (USP) and lyophilisation. In the USP process, thermal decomposition of the generated aerosols in an N2/H2 reduction atmosphere caused a complete decomposition of the nickel (II) nitrate to elemental Ni, which became trapped on the formed Y2O3 nanoparticles. The Ni/Y2O3 nanocomposite particles were captured via gas washing in an aqueous solution of polyvinylpyrrolidone (PVP) in collection bottles. PVP was chosen for its ability to stabilise nano-suspensions and as an effective cryoprotectant. Consequently, there was no loss or agglomeration of Ni/Y2O3 nanocomposite material during the lyophilisation process. The Ni/Y2O3 nanocomposite powder was analysed using ICP-MS, SEM-EDX, and XPS, which showed the impact of different precursor concentrations on the final Ni/Y2O3 nanocomposite particle composition. In a final step, highly concentrated Ni/Y2O3 nanocomposite ink (Ni/Y2O3 > 0.140 g/mL) and test coatings from this ink were prepared by applying them on a white matte photo paper sheet. The reflection curve of the prepared Ni/Y2O3 nanocomposite coating showed a local maximum at 440 nm with a value of 39% reflection. Given that Ni is located on the surface of the Ni/Y2O3 nanocomposite in the elemental state and according to the identified properties, tests of the catalytic properties of this coating will be performed in the future.
Ključne besede: Ultrasonic Spray Pyrolysis (USP), lyophilisation, Ni/Y2O3 nanocomposite, characterisation, coatings
Objavljeno v DKUM: 20.03.2025; Ogledov: 0; Prenosov: 0
.pdf Celotno besedilo (6,07 MB)
Gradivo ima več datotek! Več...

2.
Oxidation behaviour of microstructurally highly metastable Ag-La alloy
Andraž Jug, Mihael Brunčko, Rebeka Rudolf, Ivan Anžel, 2022, izvirni znanstveni članek

Opis: A new silver-based alloy with 2 wt.% of lanthanum (La) was studied as a potential candidate for electric contact material. The alloy was prepared by rapid solidification, performed by the melt spinning technique. Microstructural examination of the rapidly solidified ribbons revealed very fine grains of αAg and intermetallic Ag5La particles, which appear in the volume of the grains, as well as on the grain boundaries. Rapid solidification enabled high microstructural refinement and provided a suitable starting microstructure for the subsequent internal oxidation, resulting in fine submicronsized La2O3 oxide nanoparticle formation throughout the volume of the silver matrix (αAg). The resulting nanostructured Ag-La2O3 microstructure was characterised by high-resolution FESEM and STEM, both equipped with EDX. High-temperature internal oxidation of the rapidly solidified ribbons essentially changed the microstructure. Mostly homogeneously dispersed nano-sized La2O3 were formed within the grains, as well as on the grain boundaries. Three mechanisms of internal oxidation were identified: (i) the oxidation of La from the solid solution; (ii) partial dissolution of finer Ag5La particles before the internal oxidation front and oxidation of La from the solid solution; and (iii) direct oxidation of coarser Ag5La intermetallic particles.
Ključne besede: Ag-La alloy, rapid solidification, metastable microstructure, internal oxidation, characterisation, formation mechanism
Objavljeno v DKUM: 20.03.2025; Ogledov: 0; Prenosov: 0
.pdf Celotno besedilo (21,67 MB)
Gradivo ima več datotek! Več...

3.
4.
The influence of the rolling direction on the mechanical properties of the Al-Alloy EN AW-5454-D
Matjaž Balant, Tomaž Vuherer, Peter Majerič, Rebeka Rudolf, 2024, izvirni znanstveni članek

Opis: A complementary characterisation of the Al-alloy EN AW-5454 was carried out, intended for obtaining the laser hybrid welding parameters of subassemblies in the automotive industry. The investigation included a microstructural examination and the determination of the alloy’s properties using several analytical methods (HV5 hardness measurement, tensile test, Charpy impact toughness, fracture mechanics analysis). Samples were prepared in the longitudinal and transverse directions of a cold-rolled sheet of EN AW-5454 with thicknesses of 3.5 mm and 4 mm. The measured hardness on the thinner sheet was 5% higher than on the thicker sheet. The tensile and yield strength were nominal, while the elongations were smaller by 2.2–3.2% for the longitudinal samples and by 2.7–13.7% for the transverse samples. The smaller deviations from the nominal values are for the thinner sheet metal. A precise topographical analysis showed the brittle fractures of the samples. The Charpy impact toughness results on the thicker plate showed a 20% greater work needed to break it in the longitudinal direction than in the transverse direction. With the thinner sheet metal, 40% greater work was needed. SEM (scanning electron microscope) analysis has shown that the intermetallic Al6(Mn,Fe) particles in the longitudinal samples were mostly intact, with evidence of tough areas on the upper part of the fracture, indicating a better toughness than the specimens in the transverse direction. More crushed intermetallic particles were observed at the fractures of the transverse samples, and their distribution appeared to be more oriented in the direction of rolling. Fracture mechanics SENB (single edge notch bending) tests and their analysis showed that the resistance of the material to crack propagation in the longitudinal sample was about 50% greater than that in the transverse sample. SEM analysis of the fractures showed that the state of the intermetallic particles in the fracture mechanics testing and the fracture mechanism differed from the one in the Charpy fractures.
Ključne besede: Al-alloy EN AW-5454, characterisation, microstructure, properties
Objavljeno v DKUM: 02.12.2024; Ogledov: 0; Prenosov: 5
.pdf Celotno besedilo (3,23 MB)
Gradivo ima več datotek! Več...

5.
Material analysis of the remains of a wooden chest from the 4th century and a proposal for its reconstruction
Rebeka Rudolf, Janez Slapnik, Rajko Bobovnik, 2023, izvirni znanstveni članek

Ključne besede: chest, brass tile, analysis, characterisation, reconstruction
Objavljeno v DKUM: 04.04.2024; Ogledov: 157; Prenosov: 19
.pdf Celotno besedilo (2,79 MB)
Gradivo ima več datotek! Več...

6.
Microstructure, mechanical properties and fatigue behaviour of a new high-strength aluminium alloy AA 6086
Franc Zupanič, Jernej Klemenc, Matej Steinacher, Srečko Glodež, 2023, izvirni znanstveni članek

Opis: This study presents the comprehensive experimental investigation of the microstructure, mechanical and fatigue properties of a new high-strength aluminium alloy AA 6086, which was developed from a commercial aluminium alloy AA 6082. The new alloy possesses a higher content of Si, and, it also contains Cu and Zr. The alloy was characterised in the as-cast condition after homogenisation, extrusion, and T6 heat treatment. Light microscopy, scanning and transmission electron microscopy with energy dispersive spectrometry were used to analyse the microstructure and the fractography of broken specimens. The quasi-static and fatigue tests were performed on the MTS Landmark 100 kN servo-hydraulic test machine, controlled with a mechanical extensometer with a 25 mm gauge length. The quasi-static strength of the analysed aluminium alloy AA 6086 was found to be significantly higher if compared to some other AA 6xxx alloys, while the ductility was kept almost the same. The experimental results of the comprehensive fatigue tests in a Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) regime showed a good fatigue resistance, and represent a good basis for engineering design applications of the newly developed aluminium alloy AA 6086.
Ključne besede: aluminijeve zlitine, karakterizacija materiala, utrujanje, eksperimentalno testiranje, statistično ovrednotenje, Aluminium Alloy AA 6086, material characterisation, fatigue behaviour, experimental testing, statistical evaluation
Objavljeno v DKUM: 02.04.2024; Ogledov: 281; Prenosov: 29
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

7.
8.
Dynamic characterisation of novel three-dimensional axisymmetric chiral auxetic structure
Anja Mauko, Yunus Emre Yilmaz, Nejc Novak, Tomáš Doktor, Matej Vesenjak, Zoran Ren, 2024, izvirni znanstveni članek

Opis: The study presents an extensive mechanical and computational characterisation of novel cellular metamaterial with axisymmetric chiral structure (ACS) at different strain rates. The Direct Impact Hopkinson Bar (DIHB) testing device was used for impact testing up to 21 m/s striker speed, which was insufficient to reach the shock deformation regime. Thus, using computational simulations to estimate the structure behaviour at high strain rates was necessary. Experimental and computational results showed that all ACS structures exhibit a nominal stress–strain relationship typical for cellular materials. As the loading conditions shifted to a dynamic regime, the micro–inertia effect became increasingly pronounced, leading to a corresponding rise in structure stiffness. The Poisson's ratio in all ACS increases gradually, making them superior to traditional cellular materials, which experience a sudden increase in Poisson's ratio during loading. Additionally, the study found that the structures exhibited a rise in the auxetic effect with an increase in strain rate, highlighting the benefits of axisymmetric structures in high-loading regimes. Overall, the obtained results provide valuable insights into the mechanical properties of ACS under different loading regimes and will contribute to further design improvements and the fabrication of novel ACS metamaterials.
Ključne besede: axisymmetric chiral structure, auxetic, chiral unit cell, impact testing, dynamic characterisation, finite element simulations
Objavljeno v DKUM: 15.02.2024; Ogledov: 345; Prenosov: 39
.pdf Celotno besedilo (7,73 MB)
Gradivo ima več datotek! Več...

9.
Recovery study of gold nanoparticle markers from lateral flow immunoassays
Tilen Švarc, Peter Majerič, Darja Feizpour, Žiga Jelen, Matej Zadravec, Timi Gomboc, Rebeka Rudolf, 2023, izvirni znanstveni članek

Opis: Lateral flow immunoassays (LFIAs) are a simple diagnostic device used to detect targeted analytes. Wasted and unused rapid antigen lateral flow immunoassays represent mass waste that needs to be broken down and recycled into new material components. The aim of this study was to recover gold nanoparticles that are used as markers in lateral flow immunoassays. For this purpose, a dissolution process with aqua regia was utilised, where gold nanoparticles were released from the lateral flow immunoassay conjugate pads. The obtained solution was then concentrated further with gold chloride salt (HAuCl4) so that it could be used for the synthesis of new gold nanoparticles in the process of ultrasonic spray pyrolysis (USP). Various characterisation methods including scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and optical emission spectrometry with inductively coupled plasma were used during this study. The results of this study showed that the recovery of gold nanoparticles from lateral flow immunoassays is possible, and the newly synthesised gold nanoparticles represent the possibility for incorporation into new products.
Ključne besede: gold nanoparticles, recovery, LFIA, ultrasonic spray pyrolysis, characterisation
Objavljeno v DKUM: 09.02.2024; Ogledov: 358; Prenosov: 24
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

10.
Reconstruction of a fluid bed device for separating granular material from the grinding process of rapid antigen tests
Miha Jordan, Tilen Švarc, Peter Majerič, Rebeka Rudolf, Matej Zadravec, 2023, izvirni znanstveni članek

Opis: The article includes the study and reconstruction of a fluid bed device with the purpose of separating the granular material from the grinding process of rapid antigen tests. The following techniques were performed, with the purpose of characterisation of the ground particles: sieve analysis, X-ray fluorescence spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. The paper includes experimental testing of a simplified separation process with zeolite spheres and paper strips, supported by a numerical model. The flow conditions’ impact on the behaviour and interactions of particles of the considered problem were simulated using coupled computational fluid dynamics (CFD) and the discrete element method (DEM) approach. The separation process of zeolite spheres and paper strips was found to be efficient. The simulation results showed the appropriate behaviour of the particles during the process. We explained the results’ deviations, and we also presented the shortcomings and possible improvements. Further research is required to define the adequacy of the process, while using actual ground material of rapid antigen tests.
Ključne besede: rapid antigen tests, nanomaterials, fluidised bed, computational fluid dynamics, discrete element method, characterisation
Objavljeno v DKUM: 05.01.2024; Ogledov: 378; Prenosov: 55
.pdf Celotno besedilo (4,21 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.17 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici