| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 14
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Phenomenology of quantum eigenstates in mixed-type systems: Lemon billiards with complex phase space structure
Črt Lozej, Dragan Lukman, Marko Robnik, 2022, izvirni znanstveni članek

Opis: The boundary of the lemon billiards is defined by the intersection of two circles of equal unit radius with the distance 2B between their centers, as introduced by Heller and Tomsovic [E. J. Heller and S. Tomsovic, Phys. Today 46, 38 (1993)]. This paper is a continuation of our recent papers on a classical and quantum ergodic lemon billiard (B = 0.5) with strong stickiness effects [C. Lozej ˇ et al., Phys. Rev. E 103, 012204 (2021)], as well as on the three billiards with a simple mixed-type phase space and no stickiness [C. Lozej ˇ et al., Nonlin. Phenom. Complex Syst. 24, 1 (2021)]. Here we study two classical and quantum lemon billiards, for the cases B = 0.1953, 0.083, which are mixed-type billiards with a complex structure of phase space, without significant stickiness regions. A preliminary study of their spectra was published recently [ C. Lozej, D. Lukman, and M. ˇ Robnik, Physics 3, 888 (2021)]. We calculate a very large number (106) of consecutive eigenstates and their Poincaré-Husimi (PH) functions, and analyze their localization properties by studying the entropy localization measure and the normalized inverse participation ratio. We introduce an overlap index, which measures the degree of the overlap of PH functions with classically regular and chaotic regions. We observe the existence of regular states associated with invariant tori and chaotic states associated with the classically chaotic regions, and also the mixed-type states. We show that in accordance with the Berry-Robnik picture and the principle of uniform semiclassical condensation of PH functions, the relative fraction of mixed-type states decreases as a power law with increasing energy, thus, in the strict semiclassical limit, leaving only purely regular and chaotic states. Our approach offers a general phenomenological overview of the structural and localization properties of PH functions in quantum mixed-type Hamiltonian systems.
Ključne besede: quantum physics, energy, localization, quantum chaos, billiards, chaotic systems
Objavljeno v DKUM: 12.10.2023; Ogledov: 287; Prenosov: 17
.pdf Celotno besedilo (5,44 MB)
Gradivo ima več datotek! Več...

2.
Transport and Localization in Classical and Quantum Billiards
Črt Lozej, 2020, doktorska disertacija

Opis: In this thesis the classical and quantum dynamics in billiard systems are considered. Extensive numerical studies of the classical transport properties in several examples of billiard families including the ergodic Bunimovich stadium and cut-circle billiards and the mixed-type Robnik and lemon billiards are performed. The analysis of the transport is based on the random model of diffusion which assumes that due the strongly chaotic dynamics the motion of the orbit on the discretized phase space is temporally uncorrelated. The cause of the deviations from the random model dynamics is traced to dynamical trapping due to stickiness. A novel approach to locally quantifying stickiness based on the statistics of the recurrence times is presented and applied to distinguish between exponential decays of recurrence times and other types of decays. This enables the identification of sticky areas in the chaotic components. Detailed maps of their structure for a wide range of parameter values, mapping the evolution of the mixed-phase spaces and revealing some particularly interesting special examples are presented. The recurrence time distributions in sticky areas are found to be well described by a mixture of exponential decays. The transport of particle ensembles in the momentum space of classical billiards is described by using an inhomogeneous diffusion model and the classical transport times are determined. The classical transport times are vital for the analysis of the localization of chaotic eigenstates in quantum billiards. The control parameter that describes the the degree of localization of the chaotic quantum eigenstates is the ratio between the Heisenberg time (Planck's constant divided by the mean level spacing) and the classical transport time. Extensive numerical calculations of the high-lying spectra and eigenstates of the stadium, Robnik and lemon quantum billiards are performed. The spectral statistics are analysed in terms of the standard methods of quantum chaos. The level repulsion exponent of localized eigenstates is found to be a rational function of the control parameter. The degree of localization is determined with respect to localization measures based on the Poincaré-Husimi representation of the eigenstates. The mean localization measure is found to be a rational function of the control parameter and linearly related to the level repulsion exponent. The distributions of the localization measures are analysed and found to be of a universal shape well described by a two parameter empirical distribution in billiards with no apparent stickiness. The nonuniversal system specific features of localization measure distributions are related to the presence of sticky areas in the phase spaces of classical billiards with specific examples shown.
Ključne besede: Transport, localization, chaos, quantum chaos, Hamiltonian systems, level spacing distribution, mixed phase space, billiard, quantum billiard, Husimi functions, stickiness, cantorus, chaotic eigenstates, level repulsion.
Objavljeno v DKUM: 13.01.2021; Ogledov: 1556; Prenosov: 158
.pdf Celotno besedilo (24,93 MB)

3.
Statistical Properties of Time-dependent Systems
Diego Fregolente Mendes De Oliveira, 2012, doktorska disertacija

Opis: In the dissertation I have dealt with time-dependent (nonautonomous) systems, the conservative (Hamiltonian) as well as dissipative, and investigated their dynamical and statistical properties. In conservative (Hamiltonian) time-dependent systems the energy is not conserved, whilst the Liouville theorem about the conservation of the phase space volume still applies. We are interested to know, whether the system can gain energy, and whether this energy can grow unbounded, up to infinity, and we are interested in the system's behaviour in the mean, as well as its statistical properties. An example of such a system goes back to the 1940s, when Fermi proposed the acceleration of cosmic rays (in the first place protons) upon the collisions with moving magnetic domains in the interstellar medium of our Galaxy, and in other galaxies. He then proposed a simple mechanical one-dimensional model, the so-called Fermi-Ulam Model (FUM), where a point particle is moving between two rigid walls, one being at rest and the other one oscillating. If the oscillation is periodic and smooth, it turned out in a nontrivial way, which is, in the modern era of understanding the chaotic dynamical systems, well understood, namely that the unbounded increasing of the energy (the so-called Fermi acceleration) is not possible, due to the barriers in form of invariant tori, which partition the phase space into regions, between which the transitions are not possible. The research has then been extended to other simple dyanamical systems, which have complex dynamics. The first was so-called bouncer model, in which a point particle bounces off the oscillating platform in a gravitational field. In this simple system the Fermi acceleration is possible. Later the research was directed towards two-dimensional billiard systems. It turned out that the Fermi acceleration is possible in all such systems, which are at least partially chaotic (of the mixed type), or even in a system that is integrable as static, namely in case of the elliptic billiard. (The circle billiard is an exception, because it is always integrable, as the angular momentum is conserved even in time-dependent case.) The study of time-dependent systems has developed strongly worldwide around the 1990s, in particular in 2000s, and became one of the central topics in nonlinear dynamics. It turned out, quite generally, but formal and implicit, in the sense of mathematical existence theorems, that in nonautonomous Hamilton systems the energy can grow unbounded, meaning that the system ``pumps" the energy from the environment with which it interacts. There are many open questions: how does the energy increase with time, in particular in the mean of some representative ensemble of initial conditions (typically the phase space of two-dimensional time-dependent billiards is four-dimensional.) It turned out that almost everywhere the power laws apply, empirically, based on the numerical calculations, but with various acceleration exponents. If the Fermi acceleration is not posssible, like e.g. in the FUM, due to the invariant tori, then after a certain time of acceleration stage the crossover into the regime of saturation takes place, whose characteristics also follow the power laws. One of the central themes in the dissertation is the study of these power laws, their critical exponents, analytical relationships among them, using the scaling analysis (Leonel, McClintock and Silva, Phys. Rev. Lett. 2004). Furthermore, the central theme is the question, what happens, if, in a nonautonomous Hamilton system which exhibits Fermi acceleration, we introduce dissipation, either at the collisions with the walls (collisional dissipation) or during the free motion (in-flight dissipation, due to the viscosity of the fluid or the drag force etc.). Dissipation typically transforms the periodic points into point attractors and chaotic components into chaotic attractors. The Fermi acceleration is always suppressed. We are interested in the phase portraits of
Ključne besede: nonlinear dynamics, dynamical systems, conservative and dissipative systems, time-dependent systems, Fermi acceleration, billiards, kicked systems, chaos, chaotic and periodic attractors, bifurcations, boundary crisis
Objavljeno v DKUM: 19.09.2012; Ogledov: 3256; Prenosov: 155
.pdf Celotno besedilo (16,09 MB)

4.
Nonlinear time series analysis of the human electrocardiogram
Matjaž Perc, 2005, izvirni znanstveni članek

Opis: We analyse the human electrocardiogram with simple nonlinear time series analysis methods that are appropriate for graduate as well as undergraduate courses. In particular, attention is devoted to the notions of determinism and stationarity in physiological data. We emphasize that methods of nonlinear time series analysis can be successfully applied only if the studied data set originates from a deterministic stationary system. After positively establishing the presence of determinism and stationarity in the studied electrocardiogram, we calculate the maximal Lyapunov exponent, thus providing interesting insights into the dynamics of the human heart. Moreover, to facilitate interest and enable the integration of nonlinear time series analysis methods into the curriculum at an early stage of the educational process, we also provide user-friendly programs for each implemented method.
Ključne besede: dynamic systems, chaotic systems, nonlinear dynamics, electrocardiogram, human electrocardiogram, nonlinear analyses
Objavljeno v DKUM: 07.06.2012; Ogledov: 2504; Prenosov: 114
URL Povezava na celotno besedilo

5.
Visualizing the attraction of strange attractors
Matjaž Perc, 2005, izvirni znanstveni članek

Opis: We describe a simple new method that provides instructive insights into the dynamics of chaotic time-continuous systems that yield strange attractors as solutions in the phase space. In particular, we show that the norm of the vector field component that is orthogonal to the trajectory is an excellent quantity for visualizing the attraction of strange attractors, thus promoting the understanding of their formation and overall structure. Furthermore, based on the existence of zero orthogonal field strengths in planes that form low-dimensional strange attractors, we also provide an innovative explanation for the origin of chaotic behaviour. For instructive purposes, we first apply the method to a simple limit cycle attractor, and then analyse two paradigmatic mathematical models for classical time-continuous chaos. To facilitate the use of our method in graduate as well as undergraduate courses, we also provide user-friendly programs in which the presented theory is implemented.
Ključne besede: dynamic systems, chaotic systems, nonlinear dynamics, attractors, strange attractors
Objavljeno v DKUM: 07.06.2012; Ogledov: 2439; Prenosov: 99
URL Povezava na celotno besedilo

6.
Thoughts out of noise
Matjaž Perc, 2006, izvirni znanstveni članek

Opis: We study the effects of additive Gaussian noise on the behaviour of a simple spatially extended system, which is locally modelled by a nonlinear two-dimensional iterated map describing neuronal dynamics. In particular, we focus on the ability of noise to induce spatially ordered patterns, i. e. the so-called noise-induced pattern formation. For intermediate noise intensities, the spatially extended system exhibits ordered circular waves, thereby clearly manifesting the constructive role of random perturbations. The emergence of observed noise-induced patterns is explained with simple arguments that are obtained by analysing the typical spatial scale of patterns evoked by various diffusion coefficients. Since discrete-time systems are straightforward to implement and require modest computational capabilities, the present study describes one of the most fascinating and visually compelling examples of noise-induced self-organization in nonlinear systems in an accessible way for graduate or even advanced undergraduate students attending a nonlinear dynamics course.
Ključne besede: dynamic systems, chaotic systems, nonlinear dynamics, nonlinear systems, noise, nonlinear analyses
Objavljeno v DKUM: 07.06.2012; Ogledov: 1677; Prenosov: 40
URL Povezava na celotno besedilo

7.
Microeconomic uncertainties facilitate cooperative alliances and social welfare
Matjaž Perc, 2007, izvirni znanstveni članek

Opis: We show that microeconomic chaotic variations of payoffs in the prisoner's dilemma game maintain cooperation over a broad range of defection temptation values where otherwise economic stalemate reigns. Thus, unpredictability at micro scales impedes mutual defection that inflicts social poverty.
Ključne besede: chaotic systems, game theory, microeconomic chaos, cooperation, social welfare
Objavljeno v DKUM: 07.06.2012; Ogledov: 1916; Prenosov: 161
URL Povezava na celotno besedilo

8.
Singing of Neoconocephalus robustus as an example of deterministic chaos in insects
Tina Perc Benko, Matjaž Perc, 2007, izvirni znanstveni članek

Opis: We use nonlinear time series analysis methods to analyse the dynamics of the sound-producing apparatus of the katydid Neoconocephalus robustus. We capture the dynamics by analysing a recording of the singing activity. First, we reconstruct the phase space from the sound recording and test it against determinism and stationarity. After confirming determinism and stationarity, we show that the maximal Lyapunov exponent of the series is positive, which is a strong indicator for the chaotic behaviour of the system. We discuss that methods of nonlinear time series analysis can yield instructive insights and foster the understanding of acoustic communication among insects.
Ključne besede: chaotic systems, chaos, time series, time series analyses, insect sounds, katydid
Objavljeno v DKUM: 07.06.2012; Ogledov: 1921; Prenosov: 502
.pdf Celotno besedilo (1,05 MB)
Gradivo ima več datotek! Več...

9.
Flights towards defection in economic transactions
Matjaž Perc, 2007, izvirni znanstveni članek

Opis: We show that Lévy distributed variations of payoffs in the prisoner's dilemma game impede cooperation as the frequency of rare events increases. Lévy flights thus facilitate defection, but also uphold the evolutionary process, arguably maintaining a healthy level of competitiveness amongst the agents.
Ključne besede: chaotic systems, game theory, Lévy process, cooperation, social welfare
Objavljeno v DKUM: 07.06.2012; Ogledov: 1952; Prenosov: 161
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

10.
Proximity to periodic windows in bifurcation diagrams as a gateway to coherence resonance in chaotic systems
Marko Gosak, Matjaž Perc, 2007, izvirni znanstveni članek

Opis: We show that chaotic states situated in the proximity of periodic windows in bifurcation diagrams are eligible for the observation of coherence resonance. In particular, additive Gaussian noise of appropriate intensity can enhance the temporal order in such chaotic states in a resonant manner. Results obtained for the logistic map and the Lorenz equations suggest that the presented mechanism of coherence resonance is valid beyond particularities of individual systems. We attribute the findings to the increasing attraction of imminent periodic orbits and the ability of noise to anticipate their existence and use a modified wavelet analysis to support our arguments.
Ključne besede: chaotic systems, spatial resonance, coherence resonance, nonlinear systems, noise, spatial dynamics, mathematical models, bifurcation diagrame
Objavljeno v DKUM: 07.06.2012; Ogledov: 2407; Prenosov: 134
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

Iskanje izvedeno v 7.47 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici