| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 30
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
1.
Computational modeling of natural convection in nanofluid-saturated porous media: an investigation into heat transfer phenomena : Janja Kramer Stajnko ... [et al.]
Janja Kramer Stajnko, Jure Ravnik, Renata Jecl, Matjaž P. Nekrep, 2024, izvirni znanstveni članek

Opis: A numerical study was carried out to analyze the phenomenon of natural convection in a porous medium saturated with nanofluid. In the study, the boundary element method was used for computational modeling. The fluid flow through a porous matrix is described using the Darcy– Brinkman–Forchheimer momentum equation. In addition, a mathematical model for nanofluids was used, which follows a single-phase approach and assumes that the nanoparticles within a fluid can be treated as an independent fluid with effective properties. A combination of single- and sub-domain boundary element methods was used to solve the relevant set of partial differential equations. The method was originally developed for pure flow scenarios, but also proves to be effective in the context of fluid flow through porous media. The results are calculated for the case of two- and three-dimensional square cavities. In addition to various values of dimensionless control parameters, including the porous Rayleigh number (Rap), Darcy number (Da), porosity (ϕ) and nanoparticle volume fractions (φ), the effects of the inclination angle of the cavity on the overall heat transfer (expressed by the Nusselt number (Nu)) and fluid flow characteristics were investigated. The results indicate a pronounced dependence of the overall heat transfer on the introduction of nanoparticles and inclination angle. The heat transfer in a two-dimensional cavity is increased for higher values of Darcy number in the conduction flow regime, while it is suppressed for lower values of Darcy number in the Darcy flow regime. In the case of a three-dimensional cavity, increasing the volume fraction of nanoparticles leads to a decrease in heat transfer, and furthermore, increasing the inclination angle of the cavity considerably weakens the buoyancy flow
Ključne besede: porous media, nanofluids, natural convection, boundary element method
Objavljeno v DKUM: 10.01.2025; Ogledov: 0; Prenosov: 2
.pdf Celotno besedilo (7,40 MB)
Gradivo ima več datotek! Več...

2.
Simulation study of different OPM-MEG measurement components
Urban Marhl, Tilmann Sander, Vojko Jazbinšek, 2022, izvirni znanstveni članek

Opis: Magnetoencephalography (MEG) is a neuroimaging technique that measures the magnetic fields of the brain outside of the head. In the past, the most suitable magnetometer for MEG was the superconducting quantum interference device (SQUID), but in recent years, a new type has also been used, the optically pumped magnetometer (OPM). OPMs can be configured to measure multiple directions of magnetic field simultaneously. This work explored whether combining multiple directions of the magnetic field lowers the source localization error of brain sources under various conditions of noise. We simulated dipolar-like sources for multiple configurations of both SQUID- and OPM-MEG systems. To test the performance of a given layout, we calculated the average signal-to-noise ratio and the root mean square of the simulated magnetic field; furthermore, we evaluated the performance of the dipole fit. The results showed that the field direction normal to the scalp yields a higher signal-to-noise ratio and that ambient noise has a much lower impact on its localization error; therefore, this is the optimal choice for source localization when only one direction of magnetic field can be measured. For a low number of OPMs, combining multiple field directions greatly improves the source localization results. Lastly, we showed that MEG sensors that can be placed closer to the brain are more suitable for localizing deeper sources.
Ključne besede: magnetoencephalography, optically pumped magnetometers, superconducting quantum interference device, volume conductor, boundary element method, equivalent current dipole, source localization, ambient noise, spontaneous brain noise
Objavljeno v DKUM: 16.12.2024; Ogledov: 0; Prenosov: 2
.pdf Celotno besedilo (5,06 MB)
Gradivo ima več datotek! Več...

3.
Vial wall effect on freeze-drying speed
Matjaž Ramšak, Matjaž Hriberšek, 2024, izvirni znanstveni članek

Opis: The vial wall thermal conductivity and thickness effect on freeze-drying speed is simulated. A 2D axisymmetric numerical simulation of Mannitol freeze-drying is employed using the boundary element method. The originality of the presented approach lies in the simulation of heat transfer in the vial walls as an additional computational domain in contrast to the typical methodology without a vial wall. The numerical model was validated using our measurements and the measurements from the literature. Increasing the glass vial thickness from 1 mm to 2 mm has been found as the major factor in primary drying time, increasing the gravimetrical Kv up to 20 % for all the simulated chamber pressures. The effect of thermal conductivity was simulated using a polymer and aluminium vial replacing the standard glass vial of the same thickness. The polymer vial‘s decreased Kv value is 5.6 % at a low chamber pressure of 50 mTorr, and 12.2 % at 400 mTorr, which is in excellent agreement with the experiment. Using higher conductivity materials, for example, aluminium, only 3.7 % and 2.3 % Kv increase were computed for low and high chamber pressures respectively.
Ključne besede: freeze-drying, lyophilization speedup, vial heat conductivity, vial wall thickness, boundary element method
Objavljeno v DKUM: 16.04.2024; Ogledov: 264; Prenosov: 30
.pdf Celotno besedilo (1,88 MB)
Gradivo ima več datotek! Več...

4.
Fractal geometry as an effective heat sink
Matjaž Ramšak, 2022, izvirni znanstveni članek

Opis: "How long is the coast of Britain?" was the question stated by Mandelbrot. Using smaller and smaller rulers the coast length limits to infinity. If this logic is applied to the fractal heat sink geometry, infinite cooling capacity should be obtained using fractals with mathematically infinite surface area. The aim of this article is to check this idea using Richardson extrapolation of numerical simulation results varying the fractal element length from one to zero. As expected, the extrapolated heat flux has a noninfinite limit. The presented fractal heat sink geometry is non-competitive to the straight fins.
Ključne besede: fractal heat sink, LED cooling, CPU cooling, conjugate heat transfer, laminar flow, boundary element method, Koch snowflake
Objavljeno v DKUM: 14.07.2023; Ogledov: 653; Prenosov: 17
.pdf Celotno besedilo (3,00 MB)
Gradivo ima več datotek! Več...

5.
Validation of boundary element method for assessment of weld joints accounting for notch stress : magistrsko delo
Rok Skerbiš, 2022, magistrsko delo

Opis: Robust, automated mesh generation on arbitrary weld joint geometries, using finite element method (FEM) is a problematic task. It was previously discovered, that an arbitrary weld joint geometry can be parameterized inside a CAD environment [1], however when it comes to domain discretization and boundary conditions assignment, the parameterized approach becomes too demanding inside FEM. This results in long FEM model preparation times and sometimes in problems with the parametric model itself, which leads to a need for an additional numerical method - boundary element method (BEM), which overcomes this issue and is beneficial in this case. BEM is a numerical method, that in addition to other applications finds a use in the elasto-mechanic problems, where the only concern is the boundary of the considered geometric domain. Since notch stress calculations of weld joints fall into this category, their calculation can be carried out with it. Since there is not much available information on whether or not such calculations are a suitable alternative for the currently used FEM, this thesis had to be confirmed through a structured and step by step procedure. First, a notch mesh quality study has been made, then other entities followed. It was discovered that BEM is applicable to the problem and capable of calculating results with sufficient quality. Furthermore, the parameter driven approach and automated calculation provide for additional advantageous potentials.
Ključne besede: weld joint, boundary element method, finite element method, spatial discretization, notch stress
Objavljeno v DKUM: 02.11.2022; Ogledov: 549; Prenosov: 0
.pdf Celotno besedilo (4,62 MB)

6.
Lagrangian particle tracking in velocity-vorticity resolved viscous flows by subdomain BEM
Jure Ravnik, Matjaž Hriberšek, Janez Lupše, 2016, izvirni znanstveni članek

Opis: A numerical study of particle motion in a cubic lid driven cavity is presented. As a computational tool, a boundary element based flow solver with a Lagrangian particle tracking algorithm is derived. Flow simulations were performed using an in-house boundary element based 3D viscous flow solver. The Lagrangian particle tracking algorithm is capable of simulation of dilute suspensions of particles in viscous flows taking into account gravity, buoyancy, drag, pressure gradient and added mass. The derived algorithm is used to simulate particle behaviour in a cellular flow field and in a lid driven cavity flow. Simulations of particle movement in a cellular flow field were used to validate the algorithm. The main goal of the paper was to numerically simulate the flow behaviour of spheres of different densities and different diameters, as experimentally observed in work of Tsorng et al.The study of slightly buoyant and non-buoyant particles in a lid driven cavity was aimed at discovering cases when particles leave the primary vortex and enter into secondary vortices, a phenomenon described in the work of Tsorng et al. A parametric study of this phenomenon was preformed. The presented computational results show excellent agreement with experiments, confirming the accuracy of the developed computational method.
Ključne besede: dispersed two phase flow, Lagrangian particle tracking, cellular flow, lid driven cavity, boundary element method
Objavljeno v DKUM: 04.08.2017; Ogledov: 1279; Prenosov: 403
.pdf Celotno besedilo (13,57 MB)
Gradivo ima več datotek! Več...

7.
Heat diffusion in fractal geometry cooling surface
Matjaž Ramšak, Leopold Škerget, 2012, izvirni znanstveni članek

Opis: In the paper the numerical simulation of heat diffusion in the fractal geometry of och snowflake is presented using multidomain mixed Boundary Element Method. he idea and motivation of work is to improve the cooling of small electronic devices sing fractal geometry of surface similar to cooling ribs. The heat diffusion is ssumed as the only principle of heat transfer. The results are compared to the heat lux of a flat surface. The limiting case of infinite small fractal element is computed sing Richardson extrapolation.
Ključne besede: heat transfer, cooling of electronic devices, boundary element method, fractals
Objavljeno v DKUM: 10.07.2015; Ogledov: 2022; Prenosov: 339
.pdf Celotno besedilo (313,63 KB)
Gradivo ima več datotek! Več...

8.
Mixed boundary elements for laminar flows
Matjaž Ramšak, Leopold Škerget, 1999, izvirni znanstveni članek

Opis: This paper presents a mixed boundary element formulation of the boundary domain integral method (BDIM) for solving diffusion-convective transport problems. The basic idea of mixed elements is the use of a continuos interpolation polynomial for conservative field function approximation and a discontinuous interpolation polynomial for its normal derivative along the boundary element. In this way, the advantages of continuous field function approximation are retained and its conservation is preserved while the normal flux values are approximated by interpolation nodal points with a uniquely defined normal direction. Due to the use of mixed boundary elements, the final discretized matrix system is overdetermined and a special solver based on the least squares method is applied. Driven cavity, natural and forced convection in a closed cavity are studied. Driven caviaty results at Re=100, 400 and 1000 agree better with the benchmark solution than Finite Element Method of Finite Volume Method results for the same grid density with 21 x 21 degrees of freedom. The average Nusselt number values for natural convection ▫$10^3$▫▫$le$▫Ra▫$le$▫▫$10^6$▫ agree better than 0.1% with benchmark solutions for maximal calculated grid desities 61 x 61 degrees for freedom.
Ključne besede: fluid mechanics, incompressible fluid, laminar flow, velocity vorticity formulation, boundary element method, mixed boundary elements
Objavljeno v DKUM: 01.06.2012; Ogledov: 2327; Prenosov: 96
URL Povezava na celotno besedilo

9.
Simplified modeling of detailed chemistry description in premixed turbulent combustion by BEM
Niko Samec, Leopold Škerget, 2002, izvirni znanstveni članek

Opis: A simplified modeling of premixed turbulent combustion based on detailed chemical kinetics and simplified mixing is presented. The main conservation equations of mass energy and species mass have been solved numerically applying boundary doma integral method for diffusive coonective transport equation with constant and linear source term. The model has been applied to the particular case of the premixed charge in a spark-ignited internal combustion engine. The model predictions are in good agreement with measurements.
Ključne besede: combustion, turbulence, numerical modelling, boundary element method, internal combustion engines
Objavljeno v DKUM: 01.06.2012; Ogledov: 1351; Prenosov: 89
URL Povezava na celotno besedilo

10.
Boundary element method for natural convection in non-Newtonian fluid saturated square porous cavity
Renata Jecl, Leopold Škerget, 2003, izvirni znanstveni članek

Opis: The main purpose of this work is to present the use of the Boundary Element Method (BEM) in the analysis of the natural convection in the square porous cavity saturated by the non-Newtonian fluid. The results of hydrodynamic and heat transfer evaluations are reported for the configuration in which the enclosure is heated from a side wall while the horizontal walls are insulated.The flow in the porous medium is modelled using the modified Brinkman extended Darcy model taking into account the non-Darcy viscous effects. The governing equations are transformed by the velocity-vorticity variables formulation enabling the computation scheme to be partitioned into kinematic and kinetic parts. To analyse the effects of the available non-Newtonian viscosity and to evaluate the presented approach, the power law model for shear thinning fluids (n<1), for shear thickening fluids (n>1) and in the limit for the Newtonian fluids (n=1) is considered. Numerical model is tested also for the Carreau model adequate for many non-Newtonian fluids. Solutions for the flow and temperature fields and Nusselt numbers are obtainedin terms of a modified Rayleigh number Ra*, Darcy number Da, and the non-Newtonian model parameters. The agreement between the results obtained with finite difference method is very good indicating that BEM can be efficiently used for solving transport phenomena in saturated porous medium.
Ključne besede: natural convection, non-Newtonian fluid, porous medium, cavity flow, boundary element method, boundary domain integral method
Objavljeno v DKUM: 01.06.2012; Ogledov: 1928; Prenosov: 97
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.24 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici