| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
High-Perssure process design for polymer treatment and heat transfer enhancement
Gregor Kravanja, 2018, doktorska disertacija

Opis: The doctoral thesis presents the design of several high-pressure processes involving »green solvents« so-called supercritical fluids for the eco-friendly and sustainable production of new products with special characteristics, fewer toxic residues, and low energy consumption. The thesis is divided into three main parts: polymer processing and formulation of active drugs, measurements of transport properties form pendant drop geometry, and study of heat transfer under supercritical conditions. In the first part, special attention is given to using biodegradable polymers in particle size reduction processes that are related to pharmaceutical applications for controlled drug release. The PGSSTM micronization process was applied to the biodegradable carrier materials polyoxyethylene stearyl ether (Brij 100 and Brij 50) and polyethylene glycol (PEG 4000) for the incorporation of the insoluble drugs nimodipine, fenofibrate, o-vanillin, and esomeprazole with the purpose of improving their bioavailability and dissolution rate. In order to optimize and design micronization process, preliminary transfer and thermodynamic experiments of water-soluble carriers (Brij and PEG)/ SCFs system were carried out. It was observed that a combination of process parameters, including particle size reduction and interactions between drugs and hydrophilic carriers, contributed to enhancing the dissolution rates of precipitated solid particles. In the second part, a new optimized experimental setup based on pendant drop tensiometry was developed and a mathematical model designed to fit the experimental data was used to determine the diffusion coefficients of binary systems at elevated pressures and temperatures. Droplet geometry was examined by using a precise computer algorithm that fits the Young–Laplace equation to the axisymmetric shape of a drop. The experimental procedure was validated by a comparison of the experimental data for the water-CO2 mixture with data from the literature. For the first time, interfacial tension of CO2 saturated solution with propylene glycol and diffusion coefficients of propylene glycol in supercritical CO2 at temperatures of 120°C and 150°C in a pressure range from 5 MPa, up to 17.5 MPa were measured. Additionally, the drop tensiometry method was applied for measuring systems that are of great importance in carbon sequestration related applications. The effect of argon as a co-contaminant in a CO2 stream on the interfacial tension, diffusion coefficients, and storage capacity was studied. In the third part, comprehensive investigation into the heat transfer performance of CO2, ethane and their azeotropic mixture at high pressures and temperatures was studied. A double pipe heat exchanger was developed and set up to study the effects of different operating parameters on heat transfer performance over a wide range of temperatures (25 °C to 90 °C) and pressures (5 MPa to 30 MPa). Heat flux of supercritical fluids was measured in the inner pipe in the counter-current with water in the outer pipe. For the first time, the heat transfer coefficients (HTC) of supercritical CO2, ethane and their azeotropic mixture in water loop have been measured and compared. A brief evaluation is provided of the effect of mass flux, heat flux, pressure, temperature and buoyancy force on heat transfer coefficients. Additionally, to properly evaluate the potential and the performance of azeotropic mixture CO2-ethane, the coefficients of performance (COP) were calculated for the heat pump working cycle and compared to a system containing exclusively CO2.
Ključne besede: supercritical fluids, PGSSTM, formulation of active drugs, biodegradable polymers, transport and thermodynamic data, pendant drop method, carbon sequestration, heat transfer coefficients
Objavljeno v DKUM: 28.05.2018; Ogledov: 1682; Prenosov: 231
.pdf Celotno besedilo (5,51 MB)

2.
Investigation of an electrostatic discharge protective biodegradable packaging foam in the logistic chain
Ákos Mojzes, Barnabás Tóth, Péter Csavajda, 2014, izvirni znanstveni članek

Opis: Since the beginning of the 20th century, logistics has undergone a huge technological development, which has, however, resulted in many negative effects as well. The industry, particularly in the packaging industry has been a massive waste producer, although recently it has forced the use of new materials and it started to focus on environmentally friendly technologies. During the transportation of finished and semi-finished Electrostatic Discharge (ESD) sensitive products, the product packaging system has a vital role. These kind of packaging materials must be suitable to both logistic (protection against mechanical and environmental stresses) and special ESD protection requirements. During the transportation of printed-circuit electronic products, ESD defense is then of primary significance. However there is a huge disadvantage for the use of various shield bags. Namely, this kind of associated packaging is particularly pollutant, it causes a lot of inconvenience in the form of waste. In order to rule out these materials from the packaging system, new innovative solutions have to be found. The investigated TPS (thermoplastic starch biodegradable foam) is subjected to a validation, a long process to certify that this material unites properties of two types of packaging materials at the same time. On the one hand, this packaging foam has to meet the requirements product defense. On the other hand, the material must be anti-static under the logistic stress effects. In case it is found suitable, it can be an alternative of the conventional materials. In this article, we investigate the ESD characteristic of TPS foam. As this material sensitive for environmental parameters during transportation, we make the relevant Surface Resistance (Rs) tests on different temperature and humidity conditions. Based on result, the decision of the application can be done, as an ESD packaging material.
Ključne besede: eco-friendly, biodegradable, TPS foam, ESD protection
Objavljeno v DKUM: 17.11.2017; Ogledov: 1405; Prenosov: 434
.pdf Celotno besedilo (299,86 KB)
Gradivo ima več datotek! Več...

3.
Synthesis and use of organic biodegradable aerogels as drug carriers
Anja Veronovski, Zoran Novak, Željko Knez, 2012, izvirni znanstveni članek

Opis: Aerogels of natural polysaccharides possess both biocharacteristics of polysaccharides, such as good biological compatibility and cell or enzyme-controlled degradability, and aerogel characteristics, such as very high porosity and specific surface areas that makes them highly attractive in drug delivery. Biodegradable alginate aerogels were synthesized via a sol-gel process. In the present work two methods of ionic cross-linking were used to prepare alginate hydrogels as monoliths and spheres, which can be further easily converted to high surface area aerogels. The aerogels obtained were further used as drug carriers. We investigated the effect of process parameters, such as starting concentration and viscosity of alginate solution, on synthesis products and on model drug (nicotinic acid) release. The results indicate that by using the internal setting cross-linking method for obtaining monolithic aerogels nicotinic acid was released in a more controlled manner. The aerogels thus obtained also exhibited smaller volume shrinkage than the ones described in other publications. However, with increasing alginate concentration in both types of synthesis more compact and cross-linked aerogels were formed.
Ključne besede: organic biodegradable gels, natural polysaccharides, aerogels, drug cariers
Objavljeno v DKUM: 01.06.2012; Ogledov: 2435; Prenosov: 110
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici