| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Influence of highly inflected word forms and acoustic background on the robustness of automatic speech recognition for human–computer interaction
Andrej Žgank, 2022, original scientific article

Abstract: Automatic speech recognition is essential for establishing natural communication with a human–computer interface. Speech recognition accuracy strongly depends on the complexity of language. Highly inflected word forms are a type of unit present in some languages. The acoustic background presents an additional important degradation factor influencing speech recognition accuracy. While the acoustic background has been studied extensively, the highly inflected word forms and their combined influence still present a major research challenge. Thus, a novel type of analysis is proposed, where a dedicated speech database comprised solely of highly inflected word forms is constructed and used for tests. Dedicated test sets with various acoustic backgrounds were generated and evaluated with the Slovenian UMB BN speech recognition system. The baseline word accuracy of 93.88% and 98.53% was reduced to as low as 23.58% and 15.14% for the various acoustic backgrounds. The analysis shows that the word accuracy degradation depends on and changes with the acoustic background type and level. The highly inflected word forms’ test sets without background decreased word accuracy from 93.3% to only 63.3% in the worst case. The impact of highly inflected word forms on speech recognition accuracy was reduced with the increased levels of acoustic background and was, in these cases, similar to the non-highly inflected test sets. The results indicate that alternative methods in constructing speech databases, particularly for low-resourced Slovenian language, could be beneficial.
Keywords: human–computer interaction, automatic speech recognition, acoustic modeling, highly inflected word forms, acoustic background
Published in DKUM: 28.03.2025; Views: 0; Downloads: 2
.pdf Full text (1,12 MB)
This document has many files! More...

2.
3.
A noise robust feature extraction algorithm using joint wavelet packet subband decomposition and AR modeling of speech signals
Bojan Kotnik, Zdravko Kačič, 2007, original scientific article

Abstract: This paper presents a noise robust feature extraction algorithm NRFE using joint wavelet packet decomposition (WPD) and autoregressive (AR) modeling of a speech signal. In opposition to the short time Fourier transform (STFT)-based time-frequency signal representation, wavelet packet decomposition can lead to better representation of non-stationary parts of the speech signal (e.g. consonants). The vowels are well described with an AR model as in LPC analysis. The proposed Root-Log compression scheme is used to perform the computation of the wavelet packet parameters. The separately extracted WPD and AR-based parameters are combined together and then transformed with the usage of linear discriminant analysis (LDA) to finally produce a lower dimensional output feature vector. The noise robustness is improved with the application of proposed wavelet-based denoising algorithm with a modified soft thresholding procedure and time-frequency adaptive threshold. The proposed voice activity detector based on a skewness-to-kurtosis ratio of the LPC residual signal is used to effectively perform a frame-dropping principle. The speech recognition results achieved on Aurora 2 and Aurora 3 databases show overall performance improvement of 44.7% and 48.2% relative to the baseline MFCC front-end, respectively.
Keywords: automatic speech recognition, autoregressive modeling, modified soft thresholding, noise robust speech parameterization, wavelet packet decomposition
Published in DKUM: 31.05.2012; Views: 2427; Downloads: 125
URL Link to full text

Search done in 0.03 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica