| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 14
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Učinkovitost pravne ureditve imetništva pravic iz inovacij, ustvarjenih v delovnem razmerju
Elizabeta Zirnstein, 2011, izvirni znanstveni članek

Opis: Prispevek obravnava vprašanje alokacije pravic iz inovacij, ustvarjenih v delovnem razmerju. Imetništvo pravic iz inovacij, ustvarjenih v delovnem razmerju, lahko izhaja bodisi iz delovnopravnih bodisi iz intelektualnopravnih načel. V iskanju primernega ravnotežja med obema izhodiščema pa je treba upoštevati tudi načelo učinkovitosti. Avtorica ocenjuje, da je slovenski zakonodajalec ta kriterij le delno izpolnil, zato predlaga spremembe zakonodaje na tem področju v smeri večje učinkovitosti pravnih pravil. Avtorica posebno pozornost posveča tudi pravni ureditvi inovativnosti na univerzah.
Ključne besede: inovacije, inovativnost, patenti, delovna razmerja, industrijska lastnina, avtorske pravice, alokacija pravic, pravna ureditev, ekonomska analiza
Objavljeno v DKUM: 31.07.2018; Ogledov: 979; Prenosov: 73
.pdf Celotno besedilo (153,33 KB)

2.
Metoda alokacije za klasifikacijo neuravnoteženih podatkov
Sašo Karakatič, 2017, doktorska disertacija

Opis: V doktorski disertaciji predstavimo metodo z imenom alokacija, ki je namenjena klasifikaciji neuravnoteženih podatkov. Metoda alokacije je klasifikacijski ansambel iz dveh nivojev. V prvem nivoju deluje alokator, ki se s pomočjo algoritmov nenadzorovanega učenja nauči učinkovito deliti izvorno množico podatkov na homogene podmnožice, ki se nato alocirajo specializiranim klasifikatorjem na drugem nivoju. Drugi nivo sestavlja množica specializiranih klasifikatorjev, kjer je vsak naučen na specifični podmnožici, ki mu je bila alocirana, in se tako specializira za točno določeno vrsto podatkov. Ti klasifikatorji tako vrnejo končno odločitev o razredu posameznih instanc, kar je tudi rezultat metode alokacije. Z namenom preizkusa delovanja koncepta metode alokacije smo v okviru doktorske disertacije razvili dve varianti alokatorja -- alokator z detekcijo anomalij, ki uporablja eno razredni klasifikator SVM, in alokator z gručenjem k-means. Obe vrsti alokatorja smo preizkusili v kombinaciji s šestimi klasifikacijskimi metodami na mestu specializiranih klasifikatorjev na drugem nivoju. Vse variante metode alokacije v vseh kombinacijah smo preverili na neuravnoteženih in uravnoteženih podatkih, slednje z namenom validacije metode kot splošnega klasifikacijskega pristopa. Rezultate alokacij smo primerjali z obstoječimi metodami za spopadanje z neuravnoteženi podatki -- informiranim podvzorčenjem, nadvzorčenjem SMOTE in ansambli bagging, MultiBoost in AdaBoost. V eksperimentih smo primerjali rezultate metrik klasifikacije (ki smo jih identificirali v teoretičnem delu disertacije) in čase, potrebne za učenje klasifikacijskega modela. Rezultate eksperimentov smo dodatno preverili s statistično analizo in na podlagi tega prišli do zaključkov, da je metoda alokacije učinkovita alternativa obstoječim pristopom pri klasifikaciji neuravnoteženih in tudi uravnoteženih podatkov.
Ključne besede: strojno učenje, klasifikacija, neuravnoteženi podatki, detekcija anomalij, alokacija, gručenje, ansambli
Objavljeno v DKUM: 10.05.2017; Ogledov: 2820; Prenosov: 459
.pdf Celotno besedilo (3,59 MB)

3.
4.
5.
Alokacija človeških virov v procesu razvoja proizvoda glede na poslovno strategijo : doktorska disertacija
Jure Meglič, 2006, doktorska disertacija

Ključne besede: polivalentnost, alokacija, kompetence
Objavljeno v DKUM: 06.06.2012; Ogledov: 3010; Prenosov: 64

6.
7.
8.
9.
10.
Iskanje izvedeno v 0.23 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici