| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 7 / 7
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
A new framework to approach Vizing's conjecture
Boštjan Brešar, Bert L. Hartnell, Michael A. Henning, Kirsti Kuenzel, Douglas F. Rall, 2021, izvirni znanstveni članek

Opis: We introduce a new setting for dealing with the problem of the domination number of the Cartesian product of graphs related to Vizing's conjecture. The new framework unifies two different approaches to the conjecture. The most common approach restricts one of the factors of the product to some class of graphs and proves the inequality of the conjecture then holds when the other factor is any graph. The other approach utilizes the so-called Clark-Suen partition for proving a weaker inequality that holds for all pairs of graphs. We demonstrate the strength of our framework by improving the bound of Clark and Suen as follows: ɣ(X◻Y) ≥ max{1/2ɣ(X) ɣt(Y), 1/2ɣt(X) ɣ(Y)}, where ɣ stands for the domination number, ɣt is the total domination number, and X◻Y is the Cartesian product of graphs X and Y.
Ključne besede: Cartesian product, total domination, Vizing's conjecture, Clark and Suen bound
Objavljeno v DKUM: 09.08.2024; Ogledov: 86; Prenosov: 9
.pdf Celotno besedilo (179,75 KB)
Gradivo ima več datotek! Več...

2.
Vizing's conjecture: a survey and recent results
Boštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2012, pregledni znanstveni članek

Opis: Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vsaj tako veliko, kot je produkt dominacijskih števil faktorjev. V članku naredimo pregled različnih pristopov k tej osrednji domnevi iz teorije grafovske dominacije. Ob tem dokažemo tudi nekaj novih rezultatov. Tako so na primer pokazane nove lastnosti minimalnega protiprimera, dokazana je tudi nova spodnja meja za produkte grafov brez induciranega ▫$K_{1,3}$▫ s poljubnimi grafi. Skozi celoten članek so obravnavani pripadajoči odprti problemi, vprašanja in sorodne domneve.
Ključne besede: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture
Objavljeno v DKUM: 10.07.2015; Ogledov: 1362; Prenosov: 90
URL Povezava na celotno besedilo

3.
Vizing's conjecture: a survey and recent results
Boštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2009

Opis: Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw-free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper.
Ključne besede: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture
Objavljeno v DKUM: 10.07.2015; Ogledov: 1365; Prenosov: 99
URL Povezava na celotno besedilo

4.
Fair reception and Vizing's conjecture
Boštjan Brešar, Douglas F. Rall, 2009, izvirni znanstveni članek

Opis: Vpeljemo koncept poštenega sprejema grafa, ki je povezan z njegovim dominantnim številom. Dokažemo, da za vse grafe, ki imajo pošten sprejem velikosti njihovega dominantnega števila, velja Vizingova domneva o dominantnem številu kartezičnega produkta grafov, s čimer posplošimo dobro znan rezultat Barcalkina in Germana o razstavljivih grafih. S kombiniranjem nav sega koncepta in rezultata Aharonija, Bergerja in Ziva dobimo alternativen dokaz izreka Aharonija in Szaba, ki pravi, da tetivni grafi zadoščajo Vizingovi domnevi. Predstavimo tudi novo neskončno družino grafov, ki zadoščajo Vizingovi domnevi.
Ključne besede: matematika, teorija grafov, dominacija, kartezični produkt grafov, Vizingova domneva, mathematics, graph theory, domination, Cartesian product of graphs, Vizing's conjecture
Objavljeno v DKUM: 10.07.2015; Ogledov: 1254; Prenosov: 114
URL Povezava na celotno besedilo

5.
Domination game
Boštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2009

Opis: The domination game played on a graph ▫$G$▫ consists of two players, Dominator and Staller who alternate taking turns choosing a vertex from ▫$G$▫ such that whenever a vertex is chosen the graph in as few steps as possible and Staller wishes to delay the process as much as possible. The game domination number ▫$gamma_g(G)$▫ is the number of vertices chosen when Dominator starts the game and the Staller-start game domination number ▫$gamma'_g(G)$▫ when Staller starts the game. It is proved that for any graph ▫$G$▫, ▫$gamma(G) le gamma_g(G) le 2gamma(G) - 1$▫, and that all possible values can be realized. It is also proved that for any graph ▫$G$▫, ▫$gamma_g(G) - 1 le gamma'_g(G) le gamma_g(G) + 2$▫, and that most of the possibilities for mutual values of ▫$gamma_g(G)$▫ and ▫$gamma'_g(G)$▫ can be realized. A connection with Vizing's conjecture is established and several problems and conjectures stated.
Ključne besede: teorija grafov, teorija iger, dominantnost, Vizingova domneva, graph theory, game theory, domination, domination game, game domination number, Vizing's conjecture
Objavljeno v DKUM: 10.07.2015; Ogledov: 1963; Prenosov: 31
URL Povezava na celotno besedilo

6.
On integer domination in graphs and Vizing-like problems
Boštjan Brešar, Michael A. Henning, Sandi Klavžar, 2006, izvirni znanstveni članek

Opis: Nadaljujemo študij ▫${k}$▫-dominantnih funkcij v grafih (ali, kot bomo tudi rekli, celoštevilske dominacije), ki so jo začeli Domke, Hedetniemi, Laskar in Fricke. Za celo število ▫$k ge 1$▫ je funkcija ▫$f: V(G) to {0,1,...,k}$▫, definirana na točkah grafa ▫$G$▫, ▫${k}$▫-dominantna funkcija, če je vsota funkcijskih vrednosti na vsaki zaprti okolici vsaj ▫$k$▫. Teža ▫${k}$▫-dominantne funkcije je vsota funkcijskih vrednosti po vseh točkah. ▫${k}$▫-dominantno število grafa ▫$G$▫ je najmanjša teža ▫${k}$▫-dominantne funkcije na ▫$G$▫. Obravnavamo ▫${k}$▫-dominantno število kartezičnega produkta grafov, predvsem probleme povezane s slavno Vizingovo domnevo. Študirana je tudi povezava med ▫${k}$▫-dominantnim številom in drugimi tipi dominacijskih parametrov.
Ključne besede: matematika, teorija grafov, ▫${k}$▫-dominantna funkcija, celoštevilska dominacija, Vizingova domneva, kartezični produkt grafov, mathematics, graph theory, ▫${k}$▫-dominating function, integer domination, Vizing's conjecture, Cartesian product
Objavljeno v DKUM: 10.07.2015; Ogledov: 1280; Prenosov: 68
URL Povezava na celotno besedilo

7.
Behzad-Vizing conjecture and Cartesian-product graphs
Blaž Zmazek, Janez Žerovnik, 2004, objavljeni znanstveni prispevek na konferenci

Opis: We prove the following theorem: if the Behzad-Vizing conjecture is true for graphs ▫$G$▫ and ▫$H$▫, then is it true for the cartesian product ▫$G Box H$▫.
Ključne besede: matematika, teorija grafov, kartezični produkt grafov, kromatično število, popolno kromatično število, Vizingova domneva, mathematics, graph theory, Cartesian graph product, chromatic number, total chromatic number, Vizing conjecture
Objavljeno v DKUM: 10.07.2015; Ogledov: 1548; Prenosov: 87
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.21 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici