| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 10
First pagePrevious page1Next pageLast page
1.
Methodology for determination of anaerobic digestion kinetics using a bench top digester
Marko Tramšek, Andreja Goršek, Peter Glavič, 2007, original scientific article

Abstract: This paper presents a methodology for determining the microbial growth kinetics of an ideal anaerobic process in a non-ideal laboratory anaerobic digester (Armfield). Some laboratory experiments were performed, to confirm the proposed methodology. Having the same zero biomass concentration, some process parameters were changed and their influence on substrate outlet concentration was monitored. The specific growth rate of the biomass, the saturation constant of the substrate, and the yield coefficient were calculated, on the basis of the measured values. These parameters enabled us to perform a dynamic simulation of an anaerobic process in ideal continuously-stirred tank reactors (CSTR). The results represented the mass concentration profiles for substrate and biomass, from which the time required for reaching the steady state (60 d), where the operation is optimal, could be determined. The laboratory anaerobic digester provided operational process data, which are applicable for wastewater treatment plant design purposes.
Keywords: wastewater treatment, anaerobic digester, kinetics, dynamic simulation
Published: 31.05.2012; Views: 1427; Downloads: 74
URL Link to full text

2.
Removal efficiency of COD, total P and total N components from municipal wastewater using hollow-fibre MBR
Irena Petrinić, Mirjana Čurlin, Jasmina Korenak, Marjana Simonič, 2011, professional article

Abstract: The membrane bioreactor (MBR) integrates well within the conventionally activated sludge system regarding advanced membrane separation for wastewater treatment. Over the last decade, a number of MBR systems have been constructed worldwide and this system is now accepted as a technology of choice for wastewater treatment especially for municipal wastewater. The aim of this work was to investigate and compare submerged MBR with conventionally-activated sludge system for the treatment of municipal wastewater in Maribor, Slovenia. It can be concluded from the results, that the efficiencies being determined by the parameters were satisfied, such as, chemical oxygen demand, total phosphorous, and total nitrogen, which were 97%,75%, and 90%, respectively. The efficiencies of ultrafiltration membrane for the same parameters were also determined, and compared with biological treatment. The results of this analysis show an additional effect regarding an improvement in the quality of the permeate but primary treatment is also very important. For successfully application of MBR system smaller grid for primary treatment is needed.
Keywords: municipal wastewater treatment, membrane bioreactor, membrane filtration, biological treatment
Published: 01.06.2012; Views: 1189; Downloads: 56
.pdf Full text (337,63 KB)
This document has many files! More...

3.
4.
Removal of vat and disperse dyes from residual pad liquors
Vera Golob, Alenka Ojstršek, 2005, original scientific article

Abstract: The efficiency of three wastewater treatment techniques, coagulation/flocculation, adsorption and ultrafiltration, has been studied for the removal of vat and disperse dyes from residual pad liquors. Three inorganic coagulants Al2(SO4)3 18H2O, FeSO4 7H2O, FeCl3 6H2O and commercial cationic flocculant, as individuals and in combination, were tested for the coagulation/flocculation methods. Granular activated carbon was used as an adsorbent in the adsorption technique. Ultrafiltration was performed using a polyethersulfone membrane with a molecular weight cut-off of 10 kDa. Dye removal was evaluated as the difference between concentrations of dyes in pad liquors before and after a particular treatment using absorbance measurements.The obtained results indicated over 90% of dye removal using appropriate coagulants and only 40% using activated carbon. The best results, dye removal over 98%, were achieved using the ultrafiltration technique.
Keywords: textile dyeing, disperse dyes, wastewater, decoloration, wastewater treatment, coagulation, flocculation, adsorption, ultrafiltration, vat dyes
Published: 01.06.2012; Views: 1352; Downloads: 70
URL Link to full text

5.
Wastewater treatment after reactive printing
Sonja Šostar-Turk, Marjana Simonič, Irena Petrinić, 2005, original scientific article

Abstract: Membrane filtration of wastewater after textile printing with reactive dyes isdescribed. The wastewater from a Slovenian factory, whose output is approx. 80% reactive dyes printed and dyed on cotton, was studied. In particular, the presence of urea, sodium alginate, oxidation agent and reactive dyes, used forthe printing paste preparation, in the wastewater was studied. Chemical analyses of actual, non-purified, wastewater showed that many Slovenian regulations were exceeded. The study of membrane filtration is based on a pilot wastewater treatment plantČ ultrafiltration (UF) and reverse osmosis (RO) units. The quality of the wastewater was improved by ultrafiltration, butits effluent still does not conform to the specification of concentration limits for emission into water. Permeate coming from RO meets the required specification and, therefore, could be re-used in the washing process of printed textiles.
Keywords: textile printing, reactive dyes, wastewater treatment, membrane filtration, pilot plant
Published: 01.06.2012; Views: 1790; Downloads: 61
URL Link to full text

6.
Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents
Vera Golob, Aleksandra Vinder, Marjana Simonič, 2005, original scientific article

Abstract: Textile dyeing processes are among the most environment-unfriendly industrial processes, because they produce coloured wastewaters that are heavily polluted with dyes, textile auxiliaries and chemicals. The coagulation/flocculation method was studied as a wastewater treatment technique for the decolourization of residual dyebath effluents after dyeing cotton/polyamide blends using reactive and acid dyes. It was discovered that acombination of aluminium sulphate and a cationic organic flocculant yields an effective treatment for residual dyebath wastewaters since almost complete decolourization was achieved, TOC, COD, AOX, BOD and the anionic surfactants were reduced and the biodegradability was increased.
Keywords: textile industry, reactive dyes, acid dyes, wastewater, čiščenje odpadnih vodwastewater treatment, flocculation, coagulation, ecological analyses, wastewater decoloration, Jar-tests
Published: 01.06.2012; Views: 1443; Downloads: 62
URL Link to full text

7.
Case study of the sonochemical decolouration of textile azo dye Reactive Black 5
Simona Vajnhandl, Alenka Majcen Le Marechal, 2007, original scientific article

Abstract: The decolouration and mineralization of reactive dye C.I. Reactive Black 5, a well-known representative of non-biodegradable azo dyes, by means of ultrasonic irradiation at 20, 279 and 817 kHz has been investigated with emphasis on the effect of various parameters on decolouration and degradation efficiency. Characterization of the used ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using Fricke and iodine dosimeter. Experiments were carried out with low frequency probe type, and a high-frequency plate type transducer at 50, 100 and 150 W of acoustic power and within the 5-300 mgžL initial dye concentration range. Decolouration, as well as radical production, increased with increasing frequency, acoustic power, and irradiation time. Any increase in initial dye concentration results in decreased decolouration rates. Sonochemical decolouration was substantially depressed by the addition of 2-methyl-2-propanol as a radical scavenger, which suggests radical-induced reactions in the solution. Acute toxicity to marine bacteria Vibrio fischeri was tested before and after ultrasound irradiation. Under the conditions employed in this study, no toxic compounds were detected after 6 h of irradiation. Mineralization of the dye was followed by TOC measurements. Relatively low degradation efficiency (50% after 6 h of treatment) indicates that ultrasound is rather inefficient in overall degradation, when used alone.
Keywords: textile industry, wastewater treatment, textile dyeing, reactive dyes, azo dyes, decoloration, ultrasound, degradation, decoloration kinetics, oxidizing species
Published: 01.06.2012; Views: 1296; Downloads: 59
URL Link to full text

8.
Residual dyebath purification using a system of constructed wetland
Alenka Ojstršek, Darinka Fakin, Danijel Vrhovšek, 2007, original scientific article

Abstract: A constructed wetland model, comprising two different substrate mixtures, was used to purify textile dyebath wastewater. Three laboratory prepared wastewaters containing three commercial dyes of different classes and chemicalconstitution (one vat and two reactive dyes), different chemicals (NaOH, NaCl) and auxiliaries (migration inhibitor, sequestering, defoaming andwetting agents) were employed. Purifying efficiency was verified by measuring pollution parameters, such as absorbance, pH, total organic carbon (TOC), chemical oxygen demand (COD) and electrical conductivity (EC). It was found that the constructed wetland model reduced dye concentration by up to 70%, lowered the TOC and COD values up to 88%, electrical conductivity up to 60% and pH from 12 to 7.6.
Keywords: textile dyeing, reactive dyes, vat dyes, wastewater treatment, constructed wetland model, biological treatment, purification
Published: 01.06.2012; Views: 1211; Downloads: 58
URL Link to full text

9.
Multivariate analysis and chemometric characterisation of textile wastewater streams
Darja Kavšek, Tina Jerič, Alenka Majcen Le Marechal, Simona Vajnhandl, Adriána Bednárová, Darinka Brodnjak-Vončina, 2013, original scientific article

Abstract: The aim of this work was to design a quick and reliable method for the evaluation and classification of wastewater streams into treatable and non-treatable effluents for reuse/recycling. Different chemometric methods were used for this purpose handling the enormous amount of data, and additionally to find any hidden information, which would increase our knowledge and improve the classification. The data obtained from the processes description, together with the analytical results of measured parameters' characterising the wastewater of a particular process, enabled us to build a fast-decision model for separating different textile wastewater outlets. Altogether 49 wastewater samples from the textile finishing company were analysed, and 19 different physical chemical measurements were performed for each of them. The resulting classification model was aimed at an automated decision about the choice of treatment technologies or a prediction about the reusability of wastewaters within any textile finishing or other company having similar characteristics of wastewater streams.
Keywords: textile finishing wastewater, chemometrics, multivariate data analysis, wastewater treatment
Published: 10.07.2015; Views: 934; Downloads: 25
.pdf Full text (130,86 KB)
This document has many files! More...

10.
Forward osmosis in wastewater treatment processes
Jasmina Korenak, Subhankar Basu, Malini Balakrishnan, Claus Hélix-Nielsen, Irena Petrinić, 2017, original scientific article

Abstract: In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.
Keywords: wastewater treatment, biomimetic membranes, desalination, draw solutions, forward osmosis
Published: 18.08.2017; Views: 470; Downloads: 216
.pdf Full text (403,57 KB)
This document has many files! More...

Search done in 0.21 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica