| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 16
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Biaxial structures of localized deformations and line-like distortions in effectively 2D nematic films
Luka Mesarec, Samo Kralj, Aleš Iglič, 2024, izvirni znanstveni članek

Opis: We numerically studied localized elastic distortions in curved, effectively two-dimensional nematic shells. We used a mesoscopic Landau-de Gennes-type approach, in which the orientational order is theoretically considered by introducing the appropriate tensor nematic order parameter, while the three-dimensional shell shape is described by the curvature tensor. We limited our theoretical consideration to axially symmetric shapes of nematic shells. It was shown that in the surface regions of stomatocyte-class nematic shell shapes with large enough magnitudes of extrinsic (deviatoric) curvature, the direction of the in-plane orientational ordering can be mutually perpendicular above and below the narrow neck region. We demonstrate that such line-like nematic distortion configurations may run along the parallels (i.e., along the circular lines of constant latitude) located in the narrow neck regions of stomatocyte-like nematic shells. It was shown that nematic distortions are enabled by the order reconstruction mechanism. We propose that the regions of nematic shells that are strongly elastically deformed, i.e., topological defects and line-like distortions, may attract appropriately surface-decorated nanoparticles (NPs), which could potentially be useful for the controlled assembly of NPs.
Ključne besede: nematic shells, orientational order, topological defects, stomatocytes, order reconstruction mechanism
Objavljeno v DKUM: 28.03.2025; Ogledov: 0; Prenosov: 6
.pdf Celotno besedilo (4,60 MB)
Gradivo ima več datotek! Več...

2.
Annihilation of highly-charged topological defects
Eva Klemenčič, Pavlo Kurioz, Milan Ambrožič, Charles Rosenblatt, Samo Kralj, 2020, izvirni znanstveni članek

Opis: We studied numerically external stimuli enforced annihilation of a pair of daughter nematic topological defect (TD) assemblies bearing a relatively strong topological charge |m|=3/2. A Landau- de Gennes phenomenological approach in terms of tensor nematic order parameter was used in an effectively two-dimensional Cartesian coordinate system, where spatial variations along the z-axis were neglected. A pair of {m=3/2,m=−3/2} was enforced by an appropriate surface anchoring field, mimicking an experimental sample realization using the atomic force microscope (AFM) scribing method. Furthermore, defects were confined within a rectangular boundary that imposes strong tangential anchoring. This setup enabled complex and counter-intuitive annihilation processes on varying relevant parameters. We present two qualitatively different annihilation paths, where we either gradually reduced the relative surface anchoring field importance or increased an external in-plane spatially homogeneous electric field E. The creation and depinning of additional defect pairs {12,−12} mediated the annihilation in such a geometry. Furthermore, we illustrate the absorption of TDs by sharp edges of the confining boundary, accompanied by m=±1/4↔∓1/4 winding reversal of edge singularities, and also E-driven zero-dimensional to one-dimensional defect core transformation.
Ključne besede: liquid crystals, topological defects, annihilation, order reconstruction
Objavljeno v DKUM: 24.01.2025; Ogledov: 0; Prenosov: 10
.pdf Celotno besedilo (3,58 MB)
Gradivo ima več datotek! Več...

3.
Nano and micro-structural complexity of nematic liquid crystal configurations
Andreja Jelen, Maha Zid, Kaushik Pal, Remya Rajan Renuka, Dejvid Črešnar, Samo Kralj, 2024, izvirni znanstveni članek

Opis: Of our interest are frustration-driven pattern generating mechanisms in systems which in bulk equilibrium display spatially homogeneous long-range orientational order in absence of perturbations. As testbed material, we select thermotropic nematic liquid crystals. In bulk, they exhibit weakly discontinuous order-disorder phase transformation on varying temperature where the ordered nematic phase features spatially uniform axial order along an arbitrary symmetry breaking direction. However, due to continuous symmetry breaking (CSB) the established order is extremely susceptible to various perturbations which are in real systems in general always present. We theoretically illustrate how diverse complex patterns could be excited. Particularly intriguing configurations could appear if topological defects are present that could be generated via CSB. Our analysis is based on a relatively simple Lebwohl-Lasher-type model in which we could get analytical insight into phenomena of our interest. Using it we illustrate history dependent early stage isotropic-nematic phase evolution and final patterns in presence of "impurities" (e.g., nanoparticles). We show how characteristic effective interaction characteristics predict qualitatively different emerging patterns. Our analysis is based on CSB which is ubiquitous in nature. Consequently, demonstrated mechanisms are expected to manifest also in other condensed matter systems whose ordered phase is formed via CSB. We illustrate how kinetics and impurities could impact key structural properties of the systems of our interest.
Ključne besede: continuous symmetry breaking, patterns, topological defects, nematic liquid crystals
Objavljeno v DKUM: 05.12.2024; Ogledov: 0; Prenosov: 7
.pdf Celotno besedilo (9,33 MB)
Gradivo ima več datotek! Več...

4.
Electric field driven reconfigurable multistable topological defect patterns
Saša Harkai, Bryce S. Murray, Charles Rosenblatt, Samo Kralj, 2020, izvirni znanstveni članek

Opis: Topological defects appear in symmetry breaking phase transitions and are ubiquitous throughout Nature. As an ideal testbed for their study, defect configurations in nematic liquid crystals (NLCs) could be exploited in a rich variety of technological applications. Here we report on robust theoretical and experimental investigations in which an external electric field is used to switch between predetermined stable chargeless disclination patterns in a nematic cell, where the cell is sufficiently thick that the disclinations start and terminate at the same surface. The different defect configurations are stabilized by a master substrate that enforces a lattice of surface defects exhibiting zero total topological charge value. Theoretically, we model disclination configurations using a Landau-de Gennes phenomenological model. Experimentally, we enable diverse defect patterns by implementing an in-house-developed atomic force measurement scribing method, where NLC configurations are monitored via polarized optical microscopy. We show numerically and experimentally that an “alphabet” of up to 18 unique line defect configurations can be stabilized in a 4 × 4 lattice of alternating �=±1 surface defects, which can be “rewired” multistably using appropriate field manipulation. Our proof-of-concept mechanism may lead to a variety of applications, such as multistable optical displays and rewirable nanowires. Our studies also are of interest from a fundamental perspective. We demonstrate that a chargeless line could simultaneously exhibit defect-antidefect properties. Consequently, a pair of such antiparallel disclinations exhibits an attractive interaction. For a sufficiently closely spaced pair of substrate-pinned defects, this interaction could trigger rewiring, or annihilation if defects are depinned.
Ključne besede: line defects, topological defects, nematic liquid crystals, electric field, atomic force microscopy, numerical techniques, polarized optical microscopy
Objavljeno v DKUM: 18.11.2024; Ogledov: 0; Prenosov: 4
.pdf Celotno besedilo (3,79 MB)
Gradivo ima več datotek! Več...

5.
Curvature potential unveiled topological defect attractors
Luka Mesarec, Aleš Iglič, Veronika Kralj-Iglič, Wojciech Góźdź, Epifanio Giovanni Virga, Samo Kralj, 2021, izvirni znanstveni članek

Opis: We consider the theoretical and positional assembling of topological defects (TDs) in effectively two-dimensional nematic liquid crystal films. We use a phenomenological Helfrich–Landau–de Gennes-type mesoscopic model in which geometric shapes and nematic orientational order are expressed in terms of a curvature tensor field and a nematic tensor order parameter field. Extrinsic, intrinsic, and total curvature potentials are introduced using the parallel transport concept. These potentials reveal curvature seeded TD attractors. To test ground configurations, we used axially symmetric nematic films exhibiting spherical topology.
Ključne besede: topological defects, nematic liquid crystals, nematic shells, geometric potentials, curvature
Objavljeno v DKUM: 30.09.2024; Ogledov: 0; Prenosov: 10
.pdf Celotno besedilo (3,69 MB)
Gradivo ima več datotek! Več...

6.
Reconfiguration of nematic dislocations
Saša Harkai, Mitja Kralj, Samo Kralj, 2023, objavljeni znanstveni prispevek na konferenci (vabljeno predavanje)

Ključne besede: fields, topological defects, topological charge, disclinations, liquid crystals
Objavljeno v DKUM: 19.09.2024; Ogledov: 0; Prenosov: 4
URL Povezava na datoteko

7.
History-dependent phase transition character
Juš Polanšek, Arbresha Hölbl, Szymon Starzonek, Aleksandra Drozd-Rzoska, Sylwester Rzoska, Samo Kralj, 2022, izvirni znanstveni članek

Opis: We consider history-dependent behavior in domain-type configurations in orientational order that are formed in configurations reached via continuous symmetry-breaking phase transitions. In equilibrium, these systems exhibit in absence of impurities a spatially homogeneous order. We focus on cases where domains are formed via (i) Kibble-Zurek mechanism in fast enough quenches or by (ii) Kibble mechanism in strongly supercooled phases. In both cases, domains could be arrested due to pinned topological defects that are formed at domain walls. In systems exhibiting polar or quadrupolar order, point and line defects (disclinations) dominate, respectively. In particular, the disclinations could form complex entangled structures and are more efficient in stabilizing domains. Domain patterns formed by fast quenches could be arrested by impurities imposing a strong enough random-field type disorder, as suggested by the Imry-Ma theorem. On the other hand, domains formed in supercooled systems could be also formed if large enough energy barriers arresting domains are established due to large enough systems’ stiffness. The resulting effective interactions in established domain-type patterns could be described by random matrices. The resulting eigenvectors reveal expected structural excitations formed in such structures. The most important role is commonly played by the random matrix largest eigenvector. Qualitatively different behavior is expected if this eigenvector exhibits a localized or extended character. In the former case, one expects a gradual, non-critical-type transition into a glass-type structure. However, in the latter case, a critical-like phase behavior could be observed.
Ključne besede: topological defects, domains, disorder
Objavljeno v DKUM: 01.07.2024; Ogledov: 140; Prenosov: 7
.pdf Celotno besedilo (2,07 MB)
Gradivo ima več datotek! Več...

8.
Reconfiguration of nematic disclinations in plane-parallel confinements
Saša Harkai, Charles Rosenblatt, Samo Kralj, 2023, izvirni znanstveni članek

Opis: We study numerically the reconfiguration process of colliding |m|=1/2 strength disclinations in an achiral nematic liquid crystal (NLC). A Landau–de Gennes approach in terms of tensor nematic-order parameters is used. Initially, different pairs {m1,m2} of parallel wedge disclination lines connecting opposite substrates confining the NLC in a plane-parallel cell of a thickness h are imposed: {1/2,1/2}, {−1/2,−1/2} and {−1/2,1/2}. The collisions are imposed by the relative rotation of the azimuthal angle θ of the substrates that strongly pin the defect end points. Pairs {1/2,1/2} and {−1/2,−1/2} “rewire” at the critical angle θ(1)c=3π/4 in all cases studied. On the other hand, two qualitatively different scenarios are observed for {−1/2,1/2}. In the thinner film regime ℎ<ℎc, the disclinations rewire at θ(2)c=5π/4. The rewiring process is mediated by an additional chargeless loop nucleated in the middle of the cell. In the regime ℎ>ℎc, the colliding disclinations at θ(2)c reconfigure into boojum-like twist disclinations.
Ključne besede: liquid crystals, topological defects, disclinations, reconfiguration
Objavljeno v DKUM: 28.03.2024; Ogledov: 177; Prenosov: 25
.pdf Celotno besedilo (7,16 MB)
Gradivo ima več datotek! Več...

9.
Stable assemblies of topological defects in nematic orientational order
Arbresha Hölbl, Luka Mesarec, Juš Polanšek, Aleš Iglič, Samo Kralj, 2023, izvirni znanstveni članek

Opis: We considered general mechanisms enabling the stabilization of localized assemblies of topological defects (TDs). There is growing evidence that physical fields represent fundamental natural entities, and therefore these features are of interest to all branches of physics. In general, cores of TDs are energetically costly, and consequently, assemblies of TDs are unfavorable. Owing to the richness of universalities in the physics of TDs, it is of interest to identify systems where they are easily experimentally accessible, enabling detailed and well-controlled analysis of their universal behavior, and cross-fertilizing knowledge in different areas of physics. In this respect, thermotropic nematic liquid crystals (NLCs) represent an ideal experiment testbed for such studies. In addition, TDs in NLCs could be exploited in several applications. We present examples that emphasize the importance of curvature imposed on the phase component of the relevant order parameter field. In NLCs, it is represented by the nematic tensor order parameter. Using a simple Landau-type approach, we show how the coupling between chirality and saddle splay elasticity, which can be expressed as a Gaussian curvature contribution, can stabilize Meron TDs. The latter have numerous analogs in other branches of physics. TDs in 2D curved manifolds reveal that the Gaussian curvature dominantly impacts the assembling and stabilization of TDs. Furthermore, a strong enough curvature that serves as an attractor for TDs is a respective field that could be imposed in a fast enough phase transition. Assemblies of created TDs created in such a disordered environment could be stabilized by appropriate impurities.
Ključne besede: topological defects, nematic liquid crystals, Gaussian curvature, topological charge
Objavljeno v DKUM: 17.07.2023; Ogledov: 421; Prenosov: 28
.pdf Celotno besedilo (6,14 MB)
Gradivo ima več datotek! Več...

10.
Impact of curvature on nematic topological defects
Luka Mesarec, 2018, doktorska disertacija

Opis: Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems' microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. There are strong evidences that in physics the fields are fundamental entities of nature and not particles. If this is the case then topological defects (TDs) might play the role of fundamental particles. An adequate testing ground to study and gain fundamental understanding of TDs are nematic liquid crystals. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We analyze the impact of extrinsic and intrinsic curvature on positions of topological defects (TDs) in two-dimensional (2D) nematic films. We demonstrate that both these curvature contributions are commonly present and are expected to be weighted by comparable elastic constants. A simple Landau-de Gennes approach in terms of tensor nematic order parameter is used to numerically demonstrate impact of the curvatures on position of TDs on 2D ellipsoidal nematic shells. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs (defect,antidefect) on curved surfaces. Furthermore, we estimate a critical depinning threshold to form pairs (defect,antidefect) using the electrostatic analogy. Finally, we show how one could efficiently switch among qualitatively different structures by using a relative volume of ordered shells, which represents a relatively simple naturally accessible control parameter. In doctoral thesis, we developed theoretical model of erythrocyte membrane by using a hybrid Helfrich-Landau type mesoscopic approach, taking into account in-plane membrane ordering. We demonstrate that the derived extrinsic membrane energy term, which strongly depends on the local orientations of the molecules, is essential for the predicted broadening of the range of the relative volumes corresponding to the stable discocyte shapes, which is otherwise very narrow if only intrinsic curvature energy term dominates.
Ključne besede: Topological defects, Continuum fields, Nematic liquid crystals, Biological membranes, Nematic shells, Landau-de Gennes formalism, Topological charge, Nanoparticles, Gaussian curvature, Electrostatic analogy, Intrinsic curvature, Extrinsic curvature, Crystal growth nucleation, Relative volume
Objavljeno v DKUM: 09.03.2018; Ogledov: 2391; Prenosov: 242
.pdf Celotno besedilo (23,66 MB)

Iskanje izvedeno v 0.2 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici