| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 6 / 6
First pagePrevious page1Next pageLast page
1.
Prepoznava prstov s pomočjo globokega učenja
Robert Kopušar, 2021, master's thesis

Abstract: Magistrsko delo obravnava problematiko prepoznavanja prstov na roki, s pomočjo katere lahko v ozadju upravljamo najrazličnejše naloge in procese. Delo je zasnovano kot predstavitev reševanja iste problematike s pomočjo dveh različnih pristopov in predstavitev njunih prednosti in slabosti. Z uporabo tehnologije iskanja vzorca v sliki smo se problematike lotili na direkten način in v sliki sami iskali značilnost, s pomočjo katere smo iz slike razbrali tudi želeno gesto rok s prsti. Z uporabo tehnologije globokega učenja smo iskanje značilnosti prepustili umetni inteligenci, a smo zato na začetku potrebovali veliko bazo že rešenih primerov prepoznav. Dognanja iz tega dela dajejo dobra izhodišča vsem raziskovalcem in inženirjem pri nadaljnjemu raziskovanju in implementaciji sistemov slikovne prepoznave, ki temeljijo na tehnologiji strojnega vida ali globokega učenja.
Keywords: slikovno prepoznavanje, globoko učenje, LabVIEW, TensorFlow, prst
Published: 21.06.2021; Views: 414; Downloads: 23
.pdf Full text (5,33 MB)

2.
Konvolucijske nevronske mreže za odkrivanje napak s pomočjo zvoka
Gorazd Fažmon, 2020, master's thesis

Abstract: V magistrskem delu je predstavljen razvoj sistema za zaznavanje napak v industrijskih procesih, ki temelji na osnovi zaznave zvoka. S pomočjo programskega orodja Audacity, so zajeti zvočni signali proizvodnih postopkov. S programskim orodjem Python je izdelan program za pretvorbo zvočnega signala v sliko. Z uporabo Python knjižnice TensorFlow je program naučen, da prepozna napako. Podan je podroben opis pomembnih pojmov, algoritmov, metod in testiranj sistema. Glavni cilj naloge je implementirati zgrajen sistem na dejanskem proizvodnem postopku.
Keywords: konvolucijska nevronska mreža, kakovost zvoka, spektrogram, Mel frekvenčni kepstralni koeficienti (MFCC), TensorFlow
Published: 04.11.2020; Views: 164; Downloads: 37
.pdf Full text (1,97 MB)

3.
Analiza uspešnosti optične prepoznave elementov BPMN
Slavica Jagečić, 2019, master's thesis

Abstract: Magistrsko delo predstavlja postopek izdelave modela za prepoznavo ročno risanih BPMN elementov ter pridobitev rezultatov (%) uspešnosti njihove prepoznave. Za pomoč pri razvoju modela za prepoznavo elementov BPMN smo uporabili ogrodje TensorFlow. Opravili smo pregled literature, predstavili obstoječe rešitve, razvite na podlagi optične prepoznave in strojnega učenja. Razložili smo osnovne gradnike BPMN (standard BPMN 2.0.) in nekatere od teh elementov vključili v proces analize uspešnosti razpoznave s pomočjo mobilne aplikacije, izdelane v okviru naloge in razvite v okolju Angular.js, v katero smo vključili izdelani TensorFlow model, ki je zmožen prepoznavati BPMN elemente. V analizi smo zapisali ugotovitve, ki smo jih pridobili v raziskovalnemu delu na podlagi vprašalnikov. Ugotovitve, pridobljene v analizi, so pokazale da je mobilna aplikacija zmožna prepoznavati določene elemente BPMN, vendar ne vseh. Prav tako smo podali smernice za nadaljnje delo.
Keywords: BPMN, OCR, strojno učenje, TensorFlow
Published: 13.11.2019; Views: 338; Downloads: 53
.pdf Full text (4,06 MB)

4.
Avtomatizacija pregledovanja kode s pomočjo strojnega učenja
Sebastjan Stojnšek, 2018, master's thesis

Abstract: V tem magistrskem delu smo se posvetili področju pregledovanja kode s pomočjo strojnega učenja. Proučili smo sorodna dela na tem področju ter določili teoretični pristop, s pomočjo katerega bomo lahko izvajali napovedovanje slabih sprememb programske kode programskega jezika Javascript, ki zahtevajo odpravo napak. Tako bomo zmanjšali porabo virov pri pregledovanju programske kode. Izdelali smo prototip ekspertnega sistema, ki bo omogočal generiranje metrik in učenje nevronske mreže v ogrodju Tensorflow.js. Učinkovitost sistema smo ovrednotili na treh odprtokodnih projektih ter dosegli rezultate, ki upravičujejo smiselnost vpeljave takšnega sistema v proces razvoja programske opreme.
Keywords: strojno učenje, Tensorflow, pregledovanje kode, JavaScript, nevronske mreže, programsko inženirstvo
Published: 22.11.2018; Views: 655; Downloads: 97
.pdf Full text (1,51 MB)

5.
Prepoznavanje jedi iz digitalnih slik s pomočjo konvolucijskih nevronskih mrež
Jan Banko, 2018, undergraduate thesis

Abstract: V diplomskem delu se ukvarjamo s prepoznavo jedi iz digitalnih slik s pomočjo konvolucijskih nevronskih mrež. Namen diplomskega dela je razvoj in implementacija sistema, ki je zmožen prepoznati hrano na digitalni sliki. Natančneje smo preučili delovanje konvolucijskih nevronskih mrež ter postopek prepoznavanja objektov. Opisali smo tudi uporabljene algoritme za detekcijo objektov, ki uporabljajo konvolucijske nevronske mreže. Pri implementaciji razpoznavalnika hrane smo se omejili na 8 različnih kategorij hrane. Pri testiranju na podatkovni zbirki »The Food-101 Data Set« je na množici 2400 slik najboljši izmed uporabljenih modelov detektorjev dosegel natančnost prepoznavanja 95,59 % pri uporabi metrike »PASCAL VOC 2010« ter 72,1 % pri uporabi metrike »COCO«.
Keywords: računalniški vid, prepoznavanje hrane, konvolucijske nevronske mreže, Tensorflow
Published: 31.08.2018; Views: 1275; Downloads: 216
.pdf Full text (2,69 MB)

6.
Napovedovanje odpovedi izdelkov z metodami globokega učenja
Blaž Sašek, 2017, bachelor thesis/paper

Abstract: Diplomsko delo obravnava razvoj in optimizacijo modelov za analizo garancijskih podatkov in napovedovanje odpovedi z metodami globokega učenja. Globoko učenje je redko uporabljeno v tovrstne namene, zato so raziskave na tem področju pomembne, a obenem težavne, saj obstaja manj predhodnih virov, s katerimi si lahko pomagamo. Na drugi strani pa se tehnologija v zadnjih letih razvija izjemno hitro, tako da lahko modele globokega učenja implementiramo tudi brez detajlnega poznavanja vseh elementov globokega učenja, kar je omogočilo razcvet uporabe in aplikacijo globokega učenja na široko paleto problemov. V nalogi smo preizkusili več različnih modelov, od prilagojenega enoslojnega perceptrona do konvolucijske nevronske mreže, in večje število optimizacijskih metod. Z uporabljenimi metodami smo dosegli 30–40-% stopnjo natančnosti, kar odstopa od želene 10-% stopnje napake. Pri tem moramo upoštevati majhen nabor vhodnih podatkov. Metode globokega učenja se ob zastavljenem zahtevnem pogoju niso izkazale kot primerne za uporabo, iz pridobljenih informacij pa zaključujemo, da bodo metode najverjetneje uporabne v prihodnje, ko bo na voljo več podatkov, ki bodo tudi bolj kvalitetni.
Keywords: Garancijski podatki, Strojno učenje, Nevronske mreže, Globoko učenje, Python, Tensorflow
Published: 14.09.2017; Views: 987; Downloads: 148
.pdf Full text (3,16 MB)

Search done in 0.19 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica