| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Optimal robust motion controller design using multi-objective genetic algorithm
Andrej Sarjaš, Rajko Svečko, Amor Chowdhury, 2014, original scientific article

Abstract: This paper describes the use of a multi-objective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with non-negativity conditions. Regional pole placement method is presented with the aims of controllers% structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multi-objective function is composed of different unrelated criteria such as, robust stability, controllers' stability and time performance indexes of closed loops. The design of controllers and multi-objective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm - Differential evolution.
Keywords: disturbance observer, DOB, uncertainty systems, optimal robust control, multi-objective optimization, differential evolution
Published in DKUM: 15.06.2017; Views: 1630; Downloads: 364
.pdf Full text (2,22 MB)
This document has many files! More...

2.
Quasipolynomial approach to simultaneous robust control of time-delay systems
Nikolaj Semenič, Andrej Sarjaš, Amor Chowdhury, Rajko Svečko, original scientific article

Abstract: A control law for retarded time-delay systems is considered, concerning infinite closed-loop spectrum assignment. An algebraic method for spectrum assignment is presented with a unique optimization algorithm for minimization of spectral abscissa and effective shaping of the chains of infinitely many closed-loop poles. Uncertainty of plant delays of a certain structure is considered in a sense of a robust simultaneous stabilization. Robust performance is achieved using mixed sensitivity design, which is incorporated into the addressed control law.
Keywords: time-delay systems, simultaneous robust control, algorithm
Published in DKUM: 15.06.2017; Views: 1181; Downloads: 376
.pdf Full text (2,32 MB)
This document has many files! More...

Search done in 0.05 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica