| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 10 / 28
First pagePrevious page123Next pageLast page
Slip modeling in timber-framed walls with wood-based or fibre-plaster sheathing boards
Miroslav Premrov, Peter Dobrila, Branko Bedenik, Igor Špacapan, 2007, original scientific article

Abstract: The paper provides mathematical modelling for prefabricated timber-framed walls composed of a timber frame and two different types of sheathing boards. Since by wood-based boards (WBB) the tensile strength is similar to the compressive one, there are practically no cracks appearing in the boards. On the other hand, in case of fibre-plaster sheathing boards (FPB) the tensile strength is approximately 10-times lower than the compressive one and therefore cracks in the tensile diagonal boardćs direction usually appear. Based on analysis of experimental research results [1] special approximate mathematical models have been developed. The models enable simultaneously to consider the flexibility of mechanical fasteners in the connecting areas, as well as possible cracks appearing in the tensile area of the sheathing boards.
Keywords: civil engineering, timber structures, walls, CFRP strips, carbon fibre-reinforced polymer, mathematical modelling
Published: 31.05.2012; Views: 1233; Downloads: 26
URL Link to full text

Aryl acrylate porous functional polymer supports from water-in-oil-in-water multiple emulsions
Dejan Štefanec, Peter Krajnc, 2007, original scientific article

Abstract: Porous functional polymer supports are a class of material of wide interest due to the possibility of immobilising reactive species. A simplified procedure was applied for the preparation of porous polymer supports using a water-in-oil-in-water multiple emulsion. The primary emulsion was a high internal phase emulsion, having a volume fraction of water phase up to 95%. Two reactive acrylates, namely 4-nitrophenyl acrylate and 2,4,6-trichlorophenyl acrylate, were (separately) incorporated in the oil phase in order to obtain porous reactive polymer supports. Both acrylates were crosslinked with either divinylbenzene or ethylene glycol dimethacrylate, and beads of size ca 60 m were obtained after the polymerisation of droplets suspended into the secondary aqueous phase. In the case of 4-nitrophenyl acrylate and divinylbenzene as a crosslinker, particles with a star shape, the core being ca 60 m in diameter and the arms ca 180 m in length, were obtained. The polymers were functionalised with morpholine, tris(2-aminoethyl)amine, piperidine or piperazine yielding supports with loadings of reactive groups of between 2.6 and 6.6 mmol g-1. The results show that multiple emulsions can be precursors for porous polymer preparation.
Keywords: multiple emulzije, polimerni nosilci, HIPE, organska sinteza na trdni fazi, polimerni lovilci, emulzija z visokim deležem notranje faze, aril akrilati, multiple emulsions, polymer supports, HIPE, solid phase organic synthesis, polymer supported scavengers, high internal phase emulsions, arylacrylates
Published: 31.05.2012; Views: 1630; Downloads: 83
URL Link to full text

Atrazine removal by covalent bonding to piperazine functionalized PolyHIPEs
Irena Pulko, Mitja Kolar, Peter Krajnc, 2007, original scientific article

Abstract: The removal of atrazine from water by a solid phase extraction technique usinginsoluble polymers is described. Porous crosslinked polymers bearing piperazine moieties were prepared in a one step reaction from the precursor 4-nitrophenylacrylate incorporating polymers (PolyHIPE type prepared by the polymerization of the continuous phase of a high internal phase emulsion and polymer beads prepared by suspension polymerization). Polymers were applied tosequester atrazine from aqueous solutions with a concentration of 33 ppb andirreversible covalent bonding to the polymers was achieved. GC/MS/MS was used to monitor the dynamics of atrazine uptake and it was found that almost complete removal of atrazine was acomplished with an excess of polymer after 48 hours at room temperature. For comparison, polymer beads of identical chemistry but lower porosity were also used and showed significantly slower action (near complete removal after 72 hours).
Keywords: polymer supports, polymer scavengers, monoliths, emulsion polymerisation, solid-phase synthesis
Published: 31.05.2012; Views: 1392; Downloads: 67
URL Link to full text

Use of AFM force spectroscopy for assessment of polymer response to conditions similar to the wound, during healing
Uroš Maver, Tina Maver, Andrej Žnidaršič, Zdenka Peršin, Miran Gaberšček, Karin Stana-Kleinschek, 2011, original scientific article

Abstract: Force spectroscopy is a very promising technique for the evaluation of interactions within different environments. Knowledge about them is especially important during the design and preparation of those modern wound dressings in contact with a changing wound-environment over a prolonged time. Such exposure can cause a drastic decrease in the materialćs mechanical performance, and can lead to degradation, thus lowering the success of any healing process. Our study tries to establish a model system, which would enable us to assess the applicability of the mentioned technique for the evaluation of any interaction changes between polymer molecules and a chosen surface, after exposure to different environments. Our proposed experimental setup consists of two representative polymers, a model silicon surface, and two solutions of various pHs and ionic strengths, respectively. Within the chosen range of parameters, we are confident that we can prove the usefulness of force spectroscopy for further research into polymer suitability, for the development of novel wound dressings.
Keywords: force spectroscopy, AFM, wound dressings, polymer materials, model system
Published: 01.06.2012; Views: 1126; Downloads: 54
.pdf Full text (316,48 KB)
This document has many files! More...

PolyHIPE supports in batch and flow-through Suzuki cross-coupling reactions
Jane F. Brown, Peter Krajnc, Neil R. Cameron, 2005, original scientific article

Abstract: As part of ongoing research efforts to discover alternative support materials to polymer beads for use in polymer-supported synthesis, particularly under flow-through conditions, this work involves the synthesis of PolyHIPE (High Internal Phase Emulsion) polymer monoliths. PolyHIPEs containing high loadings of chloromethyl groups were efficiently prepared by the direct copolymerization of 4-vinylbenzyl chloride and divinylbenzene monomers. The 'Merrifield' PolyHIPE proved to be an excellent support for batch and flow-through Suzuki cross-coupling reactions. A remarkably high yield of pure biaryl product was obtained using the PolyHIPE support in cubic form and utilizing an electron-rich boronic acid. In comparison to polymer beads, this material was found to be a much more efficient support in both batch and continuous flow modes. PolyHIPE converted a greater amount of chloromethyl groups into biaryl product under identical reaction conditions. It is suggested that the absence of channelling with PolyHIPE monoliths gives better performance under flow-through conditions than permanently porous beads.
Keywords: polymer supports, polymer monoliths, emulsion polymerisation, solid-phase synthesis, cross-coupling reactions
Published: 01.06.2012; Views: 1310; Downloads: 41
URL Link to full text

4-vinylbenzyl chloride based porous spherical polymer supports derived from water-in-oil-in-water emulsion
Dejan Štefanec, Peter Krajnc, 2005, original scientific article

Abstract: 4-Vinylbenzyl chloride (VBC) based water-in-oil-in-water emulsions with 85% pore volume and 70% VBC in organic phase were prepared and polymerised by free radical polymerisation. Porous spherical particles of diameters between 50 and 150 m were obtained and their morphological structure and reactivity studied by FTIR spectroscopy, elemental analysis, optical microscopy, scanning electron microscopy and mercury intrusion porosimetry. Strong influence of the suspension stabiliser, namely poly(N-vinylpyrrolidone) (PVP), on the particle form was found. Diameters of spherical polymers particles depend on the PVP concentration, being larger with the lower concentration of PVP. Reactivity of novel supports was demonstrated by the reactions with piperidine, piperazine, tris(hydroxymethyl)methylamine and tris(2-aminoethyl)amine, all yielding corresponding amine derivatives.
Keywords: multiple emulsions, polymer supports, 4-vinylbenzyl chloride, solid phase synthesis, solid phase synthesis, high internal phase emulsions
Published: 01.06.2012; Views: 1224; Downloads: 11
URL Link to full text

Electrokinetic investigation of polyelectrolyte adsorption and multilayer formation on a polymer surface
Stefan Köstler, Volker Ribitsch, Karin Stana-Kleinschek, Georg Jakopic, Simona Strnad, 2005, original scientific article

Abstract: Self assembled polyelectrolyte layers of poly(sodium 4-styrenesulfonate) (PSS), and poly(diallyldimethylammonium chloride) (PDADMAC) were deposited on planar poly(ethylene terephthalate) (PET) substrates using the layer-by-layer technique. Charged functional groups were generated on the polymer substrates by means of a surface modification procedure prior to polyelectrolyte adsorption. The layers were characterised concerning their electrokinetic properties. The build-up of multilayer architectures could be followed by changes of the zeta-potential versus pH curves. An increase of coating density with increasing layer number was found. The electrokinetic properties of the PET substrates were not recognised anymore if more then four layers were applied. If PSS formed the outermost layer these assemblies were very stable against shear forces while if PDADMAC formed the outermost layer the films were partially destroyed by high shear forces.
Keywords: textile materials, polyelectrolyte multilayers, layer-by-layer assembly, zeta-potential, ellipsometry, polymer substrate, layer stability
Published: 01.06.2012; Views: 1367; Downloads: 54
URL Link to full text

Oil-in-water high internal phase emulsions for porous monolithic polymers
Peter Krajnc, Dejan Štefanec, 2005, published scientific conference contribution abstract

Abstract: Porous monolithic polymers are objects of many studies recently due to their wide applicability. Especially in separation methods use of monoliths is growing. Usually, porous monoliths are prepared by bulk polymerisation with the use of porogenic solvents. An alternative way of preparation is to polymerise the continuous phase of an emulsion. When the volume fraction of the internal phase exceeds 74%, the emulsion is called a HIPE (high internal phase emulsion), and a polymer derived from it, a PolyHIPE. PolyHIPEs of styrene, vinylbenzyl chloride and acrylate chemistry have been prepared from awater in oil emulsion system, where monomers are dissolved in the organic phase. We describe the reversed procedure, an oil in water high internal phaseemulsion, where monomers are water soluble. Porous polymers based on acrylic acid and crosslinked with methylenebisacrylamide were prepared by using a high internal phase emulsion with toluene as the oil phase. The influence of initiator and surfactant on the morphology was studied.
Keywords: organic chemistry, porous monolith polymers, polymer supports, preparation, emulsion polymerization, HIPE
Published: 01.06.2012; Views: 2197; Downloads: 59
URL Link to full text

Aryl acrylate based high-internal-phase emulsions as precursors for reactive monolithic polymer supports
Peter Krajnc, Dejan Štefanec, Jane F. Brown, Neil R. Cameron, 2005, original scientific article

Abstract: Water-in-oil high-internal-phase emulsions (HIPEs), containing 4-nitrophenyl acrylate and 2,4,6-trichlorophenyl acrylate as reactive monomers, were prepared and polymerized, and highly porous monolithic materials resulted. The novel materials were studied by combustion analysis, Fourier transform infrared spectroscopy scanning electron microscopy, mercury porosimetry, and N2 adsorption/desorption analysis. With both esters, cellular macroporous monolithic polymers were obtained: the use of 4-nitrophenyl acrylate resulted in a cellular material with void diameters between 3 and 7 m and approximately3-m interconnects, whereas the use of 2,4,6-trichlorophenyl acrylate yielded a foam with void diameters between 2 and 5 m, most interconnects being around 1 m. The resulting monoliths proved to be very reactive toward nucleophiles, and possibilities of functionalizing the novel polymer supports were demonstrated via reactions with amines bearing additional functional groups and via the synthesis of an acid chloride derivative. Tris(hydroxymethyl)aminomethane and tris(2-aminoethyl)amine derivatives were obtained. The hydrolysis of 4-nitrophenylacrylate removed thenitrophenyl group, yielding a monolithic acrylic acid polymer. Furthermore,functionalization to immobilized acid chloride was performed very efficiently, with more than 95% of the acid groups reacting. The measurement of the nitrogen content in 4-nitrophenyl acrylate poly(HIPE)s after various times of hydrolysis showed the influence of the total pore volume of the monolithic polymers on the velocity of the reaction, which was faster with themore porous polymer.
Keywords: organic chemistry, macroporous polymers, monolithic polymer supports, emulsion polymerisation, foams, functionalization of polymers, high-internal-phase emulsions
Published: 01.06.2012; Views: 1232; Downloads: 63
URL Link to full text

Search done in 0.2 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica