| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Brain dynamics underlying preserved cycling ability in patients with Parkinson’s disease and freezing of gait
Teja Ličen, Martin Rakuša, Nicolaas I. Bohnen, Paolo Manganotti, Uroš Marušič, 2022, review article

Abstract: Parkinson’s disease (PD) is generally associated with abnormally increased beta band oscillations in the cortico-basal ganglia loop during walking. PD patients with freezing of gait (FOG) exhibit a more distinct, prolonged narrow band of beta oscillations that are locked to the initiation of movement at ∼18 Hz. Upon initiation of cycling movements, this oscillation has been reported to be weaker and rather brief in duration. Due to the suppression of the overall beta band power during cycling and its continuous nature of the movement, cycling is considered to be less demanding for cortical networks compared to walking, including reduced need for sensorimotor processing, and thus unimpaired continuous cycling motion. Furthermore, cycling has been considered one of the most efficient non-pharmacological therapies with an influence on the subthalamic nucleus (STN) beta rhythms implicative of the deep brain stimulation effects. In the current review, we provide an overview of the currently available studies and discuss the underlying mechanism of preserved cycling ability in relation to the FOG in PD patients. The mechanisms are presented in detail using a graphical scheme comparing cortical oscillations during walking and cycling in PD.
Keywords: gait, freezing of gait, Parkinson's disease, cycling, cortical oscillations, beta band
Published in DKUM: 04.12.2024; Views: 0; Downloads: 2
URL Link to full text
This document has many files! More...

2.
3.
New perspectives for computer-aided discrimination of Parkinson's disease and essential tremor
Petra Povalej Bržan, J.A. Gallego, J. P. Romero, Vojko Glaser, E. Rocon, Julián Benito-León, Félix Bermejo-Pareja, Ignacio Posada, Aleš Holobar, 2017, original scientific article

Abstract: Pathological tremor is a common but highly complex movement disorder, affecting ~5% of population older than 65 years. Different methodologies have been proposed for its quantification. Nevertheless, the discrimination between Parkinson's disease tremor and essential tremor remains a daunting clinical challenge, greatly impacting patient treatment and basic research. Here, we propose and compare several movement-based and electromyography-based tremor quantification metrics. For the latter, we identified individual motor unit discharge patterns from high-density surface electromyograms and characterized the neural drive to a single muscle and how it relates to other affected muscles in 27 Parkinson's disease and 27 essential tremor patients. We also computed several metrics from the literature. The most discriminative metrics were the symmetry of the neural drive to muscles, motor unit synchronization, and the mean log power of the tremor harmonics in movement recordings. Noteworthily, the first two most discriminative metrics were proposed in this study. We then used decision tree modelling to find the most discriminative combinations of individual metrics, which increased the accuracy of tremor type discrimination to 94%. In summary, the proposed neural drive-based metrics were the most accurate at discriminating and characterizing the two most common pathological tremor types.
Keywords: Parkinson's disease, essential tremor, electromyography, wrist movements, motor units, muscular excitation, decision tree
Published in DKUM: 03.11.2017; Views: 1699; Downloads: 426
.pdf Full text (3,31 MB)
This document has many files! More...

4.
Treatment of movement disorders using deep brain stimulation - illustrative case reports and technical notes
Tadej Strojnik, Dušan Flisar, Igor Drstvenšek, 2012, original scientific article

Abstract: Operative neuromodulation is the field of electrically or chemically altering the signal transmission in the nervous system by implanted devices in order to excite, inhibit or tune the activities of neurons or neural networks to produce therapeutic effects. Deep brain stimulation (DBS) is an important component of the therapy of movement disorders and has almost completely replaced high-frequency coagulation of brain tissue in stereotactic neurosurgery. This article presents the first DBS cases in Slovenia. In the article the technical features and adjustments of magnetic resonance (MR) imaging and development of a new microdrive, which was clinically successfully tested, are described and discussed.
Keywords: operative neuromodulation, microdrive, stereotaxy, Parkinson’s disease, MR imaging
Published in DKUM: 10.07.2015; Views: 1696; Downloads: 82
.pdf Full text (664,59 KB)
This document has many files! More...

Search done in 0.12 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica