1. Synergy of blockchain technology and data mining techniques for anomaly detectionAida Kamišalić Latifić, Renata Kovačević, Iztok Fister, 2021, pregledni znanstveni članek Opis: Blockchain and Data Mining are not simply buzzwords, but rather concepts that are playing
an important role in the modern Information Technology (IT) revolution. Blockchain has recently
been popularized by the rise of cryptocurrencies, while data mining has already been present in IT
for many decades. Data stored in a blockchain can also be considered to be big data, whereas data
mining methods can be applied to extract knowledge hidden in the blockchain. In a nutshell, this
paper presents the interplay of these two research areas. In this paper, we surveyed approaches for
the data mining of blockchain data, yet show several real-world applications. Special attention was
paid to anomaly detection and fraud detection, which were identified as the most prolific applications
of applying data mining methods on blockchain data. The paper concludes with challenges for future
investigations of this research area. Ključne besede: anomaly detection, blockchain, distributed ledger, data mining, machine learning Objavljeno v DKUM: 16.06.2025; Ogledov: 0; Prenosov: 0
Celotno besedilo (681,73 KB) Gradivo ima več datotek! Več... |
2. High-performance deployment operational Data analytics of pre-trained multi-label classification architectures with differential-evolution-based hyperparameter optimization (AutoDEHypO)Teo Prica, Aleš Zamuda, 2025, izvirni znanstveni članek Opis: This article presents a high-performance-computing differential-evolution-based hyperparameter optimization automated workflow (AutoDEHypO), which is deployed on a petascale supercomputer and utilizes multiple GPUs to execute a specialized fitness function for machine learning (ML). The workflow is designed for operational analytics of energy efficiency. In this differential evolution (DE) optimization use case, we analyze how energy efficiently the DE algorithm performs with different DE strategies and ML models. The workflow analysis considers key factors such as DE strategies and automated use case configurations, such as an ML model architecture and dataset, while monitoring both the achieved accuracy and the utilization of computing resources, such as the elapsed time and consumed energy. While the efficiency of a chosen DE strategy is assessed based on a multi-label supervised ML accuracy, operational data about the consumption of resources of individual completed jobs obtained from a Slurm database are reported. To demonstrate the impact on energy efficiency, using our analysis workflow, we visualize the obtained operational data and aggregate them with statistical tests that compare and group the energy efficiency of the DE strategies applied in the ML models. Ključne besede: high-performance computing, operational data analytics, energy efficiency, machine learning, AutoML, differential avolution, optimization Objavljeno v DKUM: 29.05.2025; Ogledov: 0; Prenosov: 2
Celotno besedilo (1,61 MB) |
3. Weakly-supervised multilingual medical NER for symptom extraction for low-resource languagesRigon Sallauka, Umut Arioz, Matej Rojc, Izidor Mlakar, 2025, izvirni znanstveni članek Opis: Patient-reported health data, especially patient-reported outcomes measures, are vital for improving clinical care but are often limited by memory bias, cognitive load, and inflexible questionnaires. Patients prefer conversational symptom reporting, highlighting the need for robust methods in symptom extraction and conversational intelligence. This study presents a weakly-supervised pipeline for training and evaluating medical Named Entity Recognition (NER) models across eight languages, with a focus on low-resource settings. A merged English medical corpus, annotated using the Stanza i2b2 model, was translated into German, Greek, Spanish, Italian, Portuguese, Polish, and Slovenian, preserving the entity annotations medical problems, diagnostic tests, and treatments. Data augmentation addressed the class imbalance, and the fine-tuned BERT-based models outperformed baselines consistently. The English model achieved the highest F1 score (80.07%), followed by German (78.70%), Spanish (77.61%), Portuguese (77.21%), Slovenian (75.72%), Italian (75.60%), Polish (75.56%), and Greek (69.10%). Compared to the existing baselines, our models demonstrated notable performance gains, particularly in English, Spanish, and Italian. This research underscores the feasibility and effectiveness of weakly-supervised multilingual approaches for medical entity extraction, contributing to improved information access in clinical narratives—especially in under-resourced languages. Ključne besede: low-resource languages, machine translation, medical entity extraction, NER, NLP, patient-reported outcomes, weakly-supervised learning Objavljeno v DKUM: 19.05.2025; Ogledov: 0; Prenosov: 2
Celotno besedilo (338,94 KB) |
4. Fostering fairness in image classification through awareness of sensitive dataIvona Colakovic, Sašo Karakatič, 2025, izvirni znanstveni članek Opis: Machine learning (ML) has demonstrated remarkable ability to uncover hidden patterns in data. However, the presence of biases and discrimination originating from the data itself and, consequently, emerging in the ML outcomes, remains a pressing concern. With the exponential growth of unstructured data, such as images, fairness has become increasingly critical, as neural network (NN) models may inadvertently learn and perpetuate societal and historical biases. To address this challenge, we propose a fairness-aware loss function that iteratively prioritizes the worst-performing sensitive group during NN training. This approach aims to balance treatment quality across sensitive groups, achieving fairer image classification outcomes while incurring only a slight compromise in overall performance. Our method, evaluated on the FairFace dataset, demonstrates significant improvements in fairness metrics while maintaining comparable overall quality. These trade-offs highlight that the minor decrease in overall quality is justified by the improvement in fairness of the models. Ključne besede: fairness, search-basimage classification, machine learning, supervised learnign, neural networks Objavljeno v DKUM: 23.04.2025; Ogledov: 0; Prenosov: 4
Celotno besedilo (2,01 MB) |
5. EEG-based finger movement classification with intrinsic time-scale decompositionMurside Degirmenci, Yilmaz Kemal Yuce, Matjaž Perc, Yalcin Isler, 2024, izvirni znanstveni članek Ključne besede: brain-computer interfaces, electroencephalogram, feature reduction, machine learning, finger movements classification, time series analysis Objavljeno v DKUM: 16.04.2025; Ogledov: 0; Prenosov: 1
Celotno besedilo (1,44 MB) Gradivo ima več datotek! Več... |
6. Advancing sustainable mobility: artificial intelligence approaches for autonomous vehicle trajectories in roundaboutsSalvatore Leonardi, Natalia Distefano, Chiara Gruden, 2025, izvirni znanstveni članek Opis: This study develops and evaluates advanced predictive models for the trajectory planning of autonomous vehicles (AVs) in roundabouts, with the aim of significantly contributing to sustainable urban mobility. Starting from the “MRoundabout” speed model, several Artificial Intelligence (AI) and Machine Learning (ML) techniques, including Linear Regression (LR), Random Forest (RF), Support Vector Regression (SVR), Gradient Boosting Regression (GBR), and Neural Networks (NNs), were applied to accurately emulate human driving behavior and optimize AV trajectories. The results indicate that neural networks achieved the best predictive performance, with R2 values of up to 0.88 for speed prediction, 0.98 for acceleration, and 0.94 for differential distance, significantly outperforming traditional models. GBR and SVR provided moderate improvements over LR but encountered difficulties predicting acceleration and distance variables. AI-driven tools, such as ChatGPT-4, facilitated data pre-processing, model tuning, and interpretation, reducing computational time and enhancing workflow efficiency. A key contribution of this research lies in demonstrating the potential of AI-based trajectory planning to enhance AV navigation, fostering smoother, safer, and more sustainable mobility. The proposed approaches contribute to reduced energy consumption, lower emissions, and decreased traffic congestion, effectively addressing challenges related to urban sustainability. Future research will incorporate real traffic interactions to further refine the adaptability and robustness of the model. Ključne besede: sustainable mobility, autonomous vehicles, machine learning, roundabouts, artificial intelligence, ChatGPT Objavljeno v DKUM: 04.04.2025; Ogledov: 0; Prenosov: 1
Celotno besedilo (9,00 MB) Gradivo ima več datotek! Več... |
7. Using a region-based convolutional neural network (R-CNN) for potato segmentation in a sorting processJaka Verk, Jernej Hernavs, Simon Klančnik, 2025, izvirni znanstveni članek Opis: This study focuses on the segmentation part in the development of a potato-sorting system that utilizes camera input for the segmentation and classification of potatoes. The key challenge addressed is the need for efficient segmentation to allow the sorter to handle a higher volume of potatoes simultaneously. To achieve this, the study employs a region-based convolutional neural network (R-CNN) approach for the segmentation task, while trying to achieve more precise segmentation than with classic CNN-based object detectors. Specifically, Mask R-CNN is implemented and evaluated based on its performance with different parameters in order to achieve the best segmentation results. The implementation and methodologies used are thoroughly detailed in this work. The findings reveal that Mask R-CNN models can be utilized in the production process of potato sorting and can improve the process. Ključne besede: image segmentation, potato sorting, neural network, mask RCNN, object detection, production process, machine learning, AI Objavljeno v DKUM: 27.03.2025; Ogledov: 0; Prenosov: 11
Celotno besedilo (5,97 MB) Gradivo ima več datotek! Več... |
8. Predictive modelling of weld bead geometry in wire arc additive manufacturingKristijan Šket, Miran Brezočnik, Timi Karner, Rok Belšak, Mirko Ficko, Tomaž Vuherer, Janez Gotlih, 2025, izvirni znanstveni članek Opis: This study investigates the predictive modelling of weld bead geometry in wire arc additive manufacturing (WAAM) through advanced machine learning methods. While WAAM is valued for its ability to produce large, complex metal parts with high deposition rates, precise control of the weld bead remains a critical challenge due to its influence on mechanical properties and dimensional accuracy. To address this problem, this study utilized machine learning approaches—Ridge regression, Lasso regression and Bayesian ridge regression, Random Forest and XGBoost—to predict the key weld bead characteristics, namely height, width and cross-sectional area. A Design of experiments (DOE) was used to systematically vary the welding current and travelling speed, with 3D weld bead geometries captured by laser scanning. Robust data pre-processing, including outlier detection and feature engineering, improved modelling accuracy. Among the models tested, XGBoost provided the highest prediction accuracy, emphasizing its potential for real-time control of WAAM processes. Overall, this study presents a comprehensive framework for predictive modelling and provides valuable insights for process optimization and the further development of intelligent manufacturing systems. Ključne besede: wire arc additive manufacturing, WA AM, predictive modelling, machine learning, weld bead geometry, XGBoost Objavljeno v DKUM: 13.03.2025; Ogledov: 0; Prenosov: 8
Celotno besedilo (3,54 MB) |
9. Application of machine learning to reduce casting defects from bentonite sand mixtureŽiga Breznikar, Marko Bojinović, Miran Brezočnik, 2024, izvirni znanstveni članek Opis: One of the largest Slovenian foundries (referred to as Company X) primarily focuses on casting moulds for the glass industry. In collaboration with Pro Labor d.o.o., Company X has been systematically gathering defect data since 2021. The analysis revealed that the majority of scrap caused by technological issues is attributed to sand defects. The initial dataset included information on defect occurrences, technological parameters of sand mixture and chemical properties of the cast material. This raw data was refined using data science techniques and statistical methods to support classification. Multiple binary classification models were developed, using sand mixture parameters as inputs, to distinguish between good casting and scrap, with the k-nearest neighbours algorithm. Their performances were evaluated using various classification metrics. Additionally, recommendations were made for development of a real-time industrial application to optimize and regulate pouring temperature in the foundry process. This is based on simulating different pouring temperatures while keeping the other parameters fixed, selecting the temperature that maximizes the likelihood of successful casting Ključne besede: gravity casting, machine learning, defects, classifier, data science Objavljeno v DKUM: 11.03.2025; Ogledov: 0; Prenosov: 10
Celotno besedilo (518,07 KB) Gradivo ima več datotek! Več... |
10. Enhancing manufacturing precision: Leveraging motor currents data of computer numerical control machines for geometrical accuracy prediction through machine learningLucijano Berus, Jernej Hernavs, David Potočnik, Kristijan Šket, Mirko Ficko, 2024, izvirni znanstveni članek Opis: Direct verification of the geometric accuracy of machined parts cannot be performed simultaneously with active machining operations, as it usually requires subsequent inspection with measuring devices such as coordinate measuring machines (CMMs) or optical 3D scanners. This sequential approach increases production time and costs. In this study, we propose a novel indirect measurement method that utilizes motor current data from the controller of a Computer Numerical Control (CNC) machine in combination with machine learning algorithms to predict the geometric accuracy of machined parts in real-time. Different machine learning algorithms, such as Random Forest (RF), k-nearest neighbors (k-NN), and Decision Trees (DT), were used for predictive modeling. Feature extraction was performed using Tsfresh and ROCKET, which allowed us to capture the patterns in the motor current data corresponding to the geometric features of the machined parts. Our predictive models were trained and validated on a dataset that included motor current readings and corresponding geometric measurements of a mounting rail later used in an engine block. The results showed that the proposed approach enabled the prediction of three geometric features of the mounting rail with an accuracy (MAPE) below 0.61% during the learning phase and 0.64% during the testing phase. These results suggest that our method could reduce the need for post-machining inspections and measurements, thereby reducing production time and costs while maintaining required quality standards Ključne besede: smart production machines, data-driven manufacturing, machine learning algorithms, CNC controller data, geometrical accuracy Objavljeno v DKUM: 10.03.2025; Ogledov: 0; Prenosov: 8
Celotno besedilo (4,44 MB) Gradivo ima več datotek! Več... |