| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Financial distress prediction of Iranian companies using data minig techniques
Mahdi Moradi, Mahdi Salehi, Mohammad Ebrahim Ghorgani, Hadi Sadoghi Yazdi, 2013, izvirni znanstveni članek

Opis: Decision-making problems in the area of financial status evaluation are considered very important. Making incorrect decisions in firms is very likely to cause financial crises and distress. Predicting financial distress of factories and manufacturing companies is the desire of managers and investors, auditors, financial analysts, governmental officials, employees. Therefore, the current study aims to predict financial distress of Iranian Companies. The current study applies support vector data description (SVDD) to the financial distress prediction problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, we use a grid-search technique using 3-fold cross-validation to find out the optimal parameter values of kernel function of SVDD. To evaluate the prediction accuracy of SVDD, we compare its performance with fuzzy c-means (FCM).The experiment results show that SVDD outperforms the other method in years before financial distress occurrence. The data used in this research were obtained from Iran Stock Market and Accounting Research Database. According to the data between 2000 and 2009, 70 pairs of companies listed in Tehran Stock Exchange are selected as initial data set.
Ključne besede: financial distress prediction, Support vector data description, Fuzzy c-mean
Objavljeno: 30.11.2017; Ogledov: 352; Prenosov: 90
.pdf Celotno besedilo (1,10 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici