| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 71
Na začetekNa prejšnjo stran12345678Na naslednjo stranNa konec
1.
Aging and Modified Washing Process for Polyester Fabrics - Environmental Impact
Ana Šaravanja, Tanja Pušić, Julija Volmajer Valh, Tihana Dekanić, 2024, izvirni znanstveni članek

Opis: Aging and washing factors have a direct influence on changing the properties of textile products, e.g., causing a release of textile fragments in the washing process. In this study, polyester fabrics were exposed to artificial aging under controlled conditions. Using a modified washing process, polyester fabrics were subjected to 10 washing cycles before and after the aging process. To monitor the influence of aging and the modified washing process on the polyester fabrics, the physical, structural and morphological properties of the fabrics and the composition of the collected wastewater were analyzed. The results indicate a slight degradation and increased defragmentation of the polyester fabric due to the processes used. Aging caused the phenomenon of “annealing”, photo-oxidative degradation, and the local thickening of the individual fibers. Aging and washing processes influence the change in tensile strength properties. An analysis of zeta potential and BET results confirmed that the aging process results in surface modifications that depend on the time of exposure. The physico-chemical characterization and microscopic analysis of the wastewater revealed various fragments and short, detached fibrils. The results confirmed that both aging and washing significantly affect the properties of polyester fabrics and the composition of the wastewater resulting from the washing process. The relevance of this research to environmental matters is emphasized through the parameters chosen, which reveal the influence of aging on polyester fabric characteristics and the contamination detected in wash wastewater. In conclusion, several avenues for future research have been identified, including lowering washing temperatures, choosing more appropriate detergents, and adjusting standard washing protocols.
Ključne besede: polyester fabric, artificial aging, washing process, wastewater, defragmentation
Objavljeno v DKUM: 20.12.2024; Ogledov: 0; Prenosov: 2
.pdf Celotno besedilo (56,87 MB)
Gradivo ima več datotek! Več...

2.
Ekologija plemenitilnih procesov
Alenka Ojstršek, Darinka Fakin, Selestina Gorgieva, 2024

Opis: Skripta z naslovom »Ekologija plemenitilnih procesov« je namenjena študentom visokošolskega študijskega programa Tehnologije tekstilnega oblikovanja. Pripravljena je tako, da študente v prvih poglavjih seznani z osnovami tehnoloških procesov plemenitenja tekstilij in njihovo ekološko problematiko. Poseben problem v tekstilni industriji predstavljajo odpadne tehnološke vode, saj so močno obremenjene, vsebujejo različne kemikalije in tekstilna pomožna sredstva, različne tipe organskih barvil, imajo ekstremne pH-vrednosti in visoke vrednosti kemijske potrebe po kisiku (KPK) in biokemijske potrebe po kisiku (BPK), vsebujejo fosfate, sulfate in ostale soli, tenzide, maščobe in olja ter različne tipe težkih kovin. V nadaljevanju so v gradivu predstavljeni alternativni mediji in postopki plemenitenja, ki za dosego izbranega učinka plemenitenja porabijo manj kemikalij in tekstilnih pomožnih sredstev, manj energije in tako vplivajo na manjšo obremenitev okolja. Poseben poudarek je na alternativnih tehnikah obdelave, ki vključujejo avtomatizacijo, ki dodatno vpliva na nižjo porabo vode in energije, manjšo količino odpadkov, odpadnih vod in emisij toplogrednih plinov ter na večjo produktivnost, varnost pri delu in optimalno izrabo delovnega časa. Pridobljeno znanje bo študentom omogočilo, da bodo poleg temeljnih znanj poznali tudi napredne pristope in tehnologije pri razvoju in plemenitenju sodobnih inženirskih materialov.
Ključne besede: ekologija, plemenitenje, tekstilni materiali, napredni postopki, odpadne vode
Objavljeno v DKUM: 16.12.2024; Ogledov: 0; Prenosov: 20
.pdf Celotno besedilo (5,38 MB)
Gradivo ima več datotek! Več...

3.
Predelava odpadnih zaščitnih kirurških mask v nov funkcionalen polimerni material : doktorska disertacija
Alen Erjavec, 2024, doktorska disertacija

Opis: Proizvodnja osebne varovalne opreme (OVO) v zadnjih letih izredno hitro narašča. K tej rasti je zagotovo prispevala pandemija bolezni COVID-19, ki pa ni edini razlog za izredno hitro rast tega sektorja. Po podatkih številnih analitičnih hiš bo trg OVO do leta 2028 imel več kot 60 % rast v primerjavi z letom 2020. Z večanjem proizvodnje OVO, pa se večajo tudi količine tega tipa odpadka in s tem pritisk na prevzemnike odpadkov. Glede na to, da gre pri zaščitnih kirurških maskah (ZKM), za enega najbolj razširjenih kosov OVO, ki ima izredno kratek čas uporabe in je njegova življenjska pot izredno linearno naravnana, so v tej doktorski disertaciji bili analizirani vplivi tega kosa OVO na okolje in predstavljene možnosti recikliranja tega materiala v večvrednostne materiale. Opravljena je bila raziskava rokovanja Slovencev z ZKM v kateri je bilo ugotovljeno, da je v prvem letu pandemije v Sloveniji bilo uporabljenih več kot 344 milijonov kosov ZKM. Prav tako je bila opravljena ocena odpadka in ocena vpliva ZKM na okolje, kadar so te nepravilno odložene. Dokazano je bilo, da so materiali zastopani v ZKM izredno primerni za postopke mehanskega recikliranja. Z namenom zagotavljanja večvrednosti končnega reciklata, so reciklatu ZKM bila dodana naravna polnila. Izbrana so bila polnila na osnovi celuloze in hitozana, saj gre za najbolj razširjena naravna polimera. Med polnili na osnovi celuloze so bili uporabljeni celulozni nanokristali, celulozne nanofibrile in kvaternizirane celulozne nanofibrile, med tem ko sta med hitozani bila uporabljena hitozan z nizko molekulsko maso in kvaterniziran hitozan. Večina polnil, je izkazala pozitiven vpliv na mehanske lastnosti reciklata, saj so nekatera povečala elastičnost reciklata tudi do 100%. Izvedene so bile številne analize površine. Te analize so med drugim pokazale, da prisotnost vseh polnil izkazuje dvig hidrofobnosti materiala, obe kvaternizirani polnili, pa v prisotnosti več kot 10 % izkazujeta tudi zelo dobro antibakterijsko delovanje reciklata, na gram + bakterije Staphylococcus aureus.
Ključne besede: zaščitne kirurške maske, mehansko recikliranje, večvrednostno recikliranje, naravna polnila, polimerni kompozit
Objavljeno v DKUM: 29.11.2024; Ogledov: 0; Prenosov: 25
.pdf Celotno besedilo (8,65 MB)

4.
Chemical decomposition of thermosets
Vasil Handjiski, 2024, diplomsko delo

Opis: This bachelor thesis depicts the chemical degradation of polyurethane and melamine formaldehyde, which are representatives of thermosets. A high–pressure reactor was used to perform chemical degradation. The effectiveness of the chemical degradation of the selected thermosets was monitored by measuring pH, total organic carbon (TOC) and total nitrogen (TN) of the liquid residues. The remaining solid material was characterized by infrared spectroscopy and the mass loss was determined. Using these analytical methods, it was concluded that the chemical degradation depends on the temperature and the duration of the reactions as well as the reaction medium. It was found that “white liquor” is a more effective medium for the chemical degradation of polyurethane and melamine formaldehyde than water.
Ključne besede: chemical degradation, polyurethane, melamine formaldehyde, FTIR
Objavljeno v DKUM: 22.10.2024; Ogledov: 0; Prenosov: 0

5.
Influence of cross-linkers on the wash resistance of chitosan-functionalized polyester fabrics
Tanja Pušić, Tea Bušac, Julija Volmajer Valh, 2024, izvirni znanstveni članek

Opis: This study investigates the wash resistance of polyester fabrics functionalized with chitosan, a biopolymer known for its biocompatibility, non-toxicity, biodegradability and environmentally friendly properties. The interaction of chitosan with synthetic polymers, such as polyester, often requires surface treatment due to the weak natural affinity between the two materials. To improve the interaction and stability of chitosan on polyester, alkaline hydrolysis of the polyester fabric was used as a surface treatment method. The effectiveness of using cross-linking agents 1,2,3,4-butane tetracarboxylic acid (BTCA) and hydroxyethyl methacrylate (HEMA) in combination with ammonium persulphate (APS) to improve the stability of chitosan on polyester during washing was investigated. The wash resistance of polyester fabrics functionalized with chitosan was tested after 1, 5 and 10 washes with a standard ECE detergent. Staining tests were carried out to evaluate the retention of chitosan on the fabric. The results showed that polyester fabrics functionalized with chitosan without cross-linkers exhibited better wash resistance than the fabrics treated with crosslinkers.
Ključne besede: polyster, functionalization, chitosan, cross-linkers, stability, washing
Objavljeno v DKUM: 10.09.2024; Ogledov: 55; Prenosov: 13
.pdf Celotno besedilo (17,25 MB)
Gradivo ima več datotek! Več...

6.
Decomposition and fragmentation of conventional and biobased plastic wastes in simulated and real aquatic systems
Olivija Plohl, Lidija Fras Zemljič, Alen Erjavec, Noemi Sep, Maja Čolnik, Yee Van Fan, Mojca Škerget, Annamaria Vujanović, Lidija Čuček, Julija Volmajer Valh, 2024, izvirni znanstveni članek

Opis: Plastics play a crucial role in our daily lives. The challenge, however, is that they become waste and contribute to a global environmental problem, increasing concerns about pollution and the urgent need to protect the environment. The accumulation and fragmentation of plastic waste, especially micro- and nanoplastics in aquatic systems, poses a significant threat to ecosystems and human health. In this study, the decomposition and fragmentation processes of conventional and biobased plastic waste in simulated water bodies (waters with different pH values) and in real water systems (tap water and seawater) are investigated over a period of one and six months. Three types of plastic were examined: thermoplastic polyethylene terephthalate and thermoset melamine etherified resin in the form of nonwovens and biobased polylactic acid (PLA) in the form of foils. Such a comprehensive study involving these three types of plastics and the methodology for tracking degradation in water bodies has not been conducted before, which underlines the novelty of the present work. After aging of the plastics, both the solid fraction and the leachate in the liquid phase were carefully examined. The parameters studied include mass loss, structural changes and alterations in functional groups observed in the aged plastics. Post-exposure assessment of the fragmented pieces includes quantification of the microplastic, microscopic observations and confirmation of composition by in situ Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. The leachate analysis includes pH, conductivity, turbidity, total carbon and microplastic size distribution. The results highlight the importance of plastic waste morphology and the minor degradation of biobased PLA and show that microfibers contribute to increased fragmentation in all aquatic systems and leave a significant ecological footprint. This study underlines the crucial importance of post-consumer plastic waste management and provides valuable insights into strategies for environmental protection. It also addresses the pressing issue of plastic pollution and provides evidence-based measures to mitigate its environmental impact.
Ključne besede: polylactic acid, polyethylene terephthalate fabric, melamine etherifed resin fabric, aquatic environment, fragmentation, waste disposal
Objavljeno v DKUM: 09.09.2024; Ogledov: 73; Prenosov: 20
.pdf Celotno besedilo (3,73 MB)
Gradivo ima več datotek! Več...

7.
Advance analysis of the obtained recycled materials from used disposable surgical masks
Alen Erjavec, Julija Volmajer Valh, Silvo Hribernik, Tjaša Kraševac Glaser, Lidija Fras Zemljič, Tomaž Vuherer, Branko Neral, Mihael Brunčko, 2024, izvirni znanstveni članek

Opis: The production of personal protective equipment (PPE) has increased dramatically in recent years, not only because of the pandemic, but also because of stricter legislation in the field of Employee Protection. The increasing use of PPE, including disposable surgical masks (DSMs), is putting additional pressure on waste collectors. For this reason, it is necessary to find high-quality solutions for this type of waste. Mechanical recycling is still the most common type of recycling, but the recyclates are often classified as low-grade materials. For this reason, a detailed analysis of the recyclates is necessary. These data will help us to improve the properties and find the right end application that will increase the value of the materials. This work represents an extended analysis of the recyclates obtained from DSMs, manufactured from different polymers. Using surface and morphology tests, we have gained insights into the distribution of different polymers in polymer blends and their effects on mechanical and surface properties. It was found that the addition of ear loop material to the PP melt makes the material tougher. In the polymer blends obtained, PP and PA 6 form the surface (affects surface properties), while PU and PET are distributed mainly inside the injection-molded samples.
Ključne besede: mechanical recycling, disposable surgical mask, morphology, surface properties, mechanical properties, nonwoven materials, PPE
Objavljeno v DKUM: 09.04.2024; Ogledov: 232; Prenosov: 15
.pdf Celotno besedilo (8,08 MB)
Gradivo ima več datotek! Več...

8.
Extending the protection ability and life cycle of medical masks through the washing process
Julija Volmajer Valh, Tanja Pušić, Mirjana Čurlin, Ana Knežević, 2023, izvirni znanstveni članek

Opis: The reuse of decontaminated disposable medical face masks can contribute to reducing the environmental burden of discarded masks. This research is focused on the effect of household and laboratory washing at 50 °C on the quality and functionality of the nonwoven structure of polypropylene medical masks by varying the washing procedure, bath composition, disinfectant agent, and number of washing cycles as a basis for reusability. The barrier properties of the medical mask were analyzed before and after the first and fifth washing cycle indirectly by measuring the contact angle of the liquid droplets with the front and back surface of the mask, further by measuring air permeability and determining antimicrobial resistance. Additional analysis included FTIR, pH of the material surface and aqueous extract, as well as the determination of residual substances—surfactants—in the aqueous extract of washed versus unwashed medical masks, while their aesthetic aspect was examined by measuring their spectral characteristics. The results showed that household washing had a stronger impact on the change of some functional properties, primarily air permeability, than laboratory washing. The addition of the disinfectant agent, didecyldimethylammonium chloride, contributes to the protective ability and supports the idea that washing of medical masks under controlled conditions can preserve barrier properties and enable reusability.
Ključne besede: medical masks, washing, detergent, didecyldimethylammonium chloride, air permeability, antimicrobial activity, residuals
Objavljeno v DKUM: 15.03.2024; Ogledov: 333; Prenosov: 26
.pdf Celotno besedilo (3,67 MB)
Gradivo ima več datotek! Več...

9.
Sustainability-oriented surface modification of polyester knitted fabrics with chitosan
Tanja Pušić, Tea Bušac, Kristina Šimić, Mirjana Čurlin, Ana Šaravanja, Katia Grgić, Julija Volmajer Valh, 2024, izvirni znanstveni članek

Opis: The existing research deals with the process of modifying polyester knitted fabrics and polyester/cotton knitted fabrics with chitosan and the stability of functionalized surface with chitosan in the washing process according to a standard and an innovative washing procedure. The current research concept aims to evaluate the degree of progressivity and progressiveness: the modification of polyester knitted fabrics with chitosan and an innovative washing process. The polyester and polyester/cotton fabrics modified with chitosan were characterized by a staining test, microscopic analysis, zeta potential measurement, and pilling tendency of the knitted fabrics before and after five and ten washing cycles with reference detergent ECE A. The results of the zeta potential measurement of knitted fabrics functionalized with chitosan confirmed cationization of the polyester and polyester/cotton fabric with chitosan. The presence of chitosan on the washed knitted fabrics in reduced quantities is demonstrated by the staining test, the colour strength (K/S), and the zeta potential values. The staining test and surface charge of the tested knitted fabrics confirmed the research hypothesis regarding the degree of progressivity of the modification of polyester and polyester/cotton knitted fabrics with chitosan and the sustainability of the innovative washing process. The streaming potential proved to be a favorable method for monitoring the stability of chitosan in the washing process in combination with a staining test with the selected dye Remazol Red RB.
Ključne besede: knitted fabrics, polyester, polyester/cotton, chitosan, washing, surfaces
Objavljeno v DKUM: 05.02.2024; Ogledov: 285; Prenosov: 22
.pdf Celotno besedilo (47,17 MB)
Gradivo ima več datotek! Več...

10.
Development of pH Responsive Polysaccharide Based Wound Dressings : doctoral disertation
Beste Elveren, 2023, doktorska disertacija

Opis: In the scope of the Doctoral Dissertation, a polysaccharide based stimuli-responsive smart material with controlled drug release was developed by using electrospinning technique, which allowed to form stimuli-responsive nanofibers with rapid visual detection of pH change in the wound bed along with anti-inflammatory activity. Incorporation of halochromic dyes into electrospun nanofibers has been an intriguing area for wound healing applications. Furthermore, it is known that the pH value within the wound milieu directly and indirectly influences all biochemical reactions taking place in the process of wound healing. It has been proven that the surface pH of a wound plays an important role in wound healing as it helps control infection and increases the antimicrobial activity, oxygen release, angiogenesis, protease activity, and bacterial toxicity. Therefore, visual pH monitoring without the need of removing the wound dressing was one of the aims of the Doctoral Dissertation. Produced stimuli-responsive wound dressings were characterized according to their morphological and chemical properties using well-known techniques such as, rheometry, conductivity, Scanning Electron Microscopy (SEM),CIE Lab, Thermogravimetric Analysis (TGA), UV/VIS Spectrophotometry, and Attenuated Total Reflection Infra-Red Spectroscopy (ATR-IR). Responsiveness of the nanofibers were achieved by integration of different halochromic dyes [bromocresol green (BCG), bromothymol blue (BTB) and thymol blue (TB)] to obtain a range of pH values. To tackle the problem of leaching of the dyes, a complexing agent; poly-diallyldimethylammonium chloride (PDADMAC) was integrated and an analysis on the formation of complexation was performed by using pH-potentiometric titration and Quartz Crystal Microbalance with Dissipation (QCM-D) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) techniques. Additionally, release tests were performed to prove that the leaching of the halochromic dyes is reduced significantly up to 97%. Furthermore, the responsiveness of the nanofibers was investigated by exposing the nanofibers to different buffer solutions with pH values 4, 7 and 10. The color change of the nanofibers were analyzed using the CIE Lab system while a visual color shift was observed according to their characteristics. Lastly, diclofenac (DFC), an anti-inflammatory drug molecule was integrated to the system and drug release studies were performed by using Franz diffusion cells. A controlled release of the drug molecule (DFC) to the wound bed is achieved and quantitative evaluations were done. Consequently, the drug release from the smart wound dressings were identified to have two separate profiles during the release. The mathematical models that were identified to fit to the kinetics are, first-order, Korsmeyer-Peppas, and Higuchi release model, confirming the controlled drug release.
Ključne besede: stimuli-responsive, polysaccharides, wound dressings, halochromism, controlled drug release, smart materials
Objavljeno v DKUM: 06.10.2023; Ogledov: 426; Prenosov: 42
.pdf Celotno besedilo (8,48 MB)

Iskanje izvedeno v 0.24 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici