| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Influence of a random field on particle fractionation and solidification in liquid-crystal colloid mixtures
Vlad Popa-Nita, Paul van der Schoot, Samo Kralj, 2006, izvirni znanstveni članek

Opis: The influence of a random-anisotropy (RA) type disorder on the phase separation of nematogen-colloid mixtures is studied theoretically by combiningthe phenomenological Landau-de Gennes, Carnahan-Starling, and hard-sphere crystal theories. We assume that the colloids enforce the RA disorder on the surrounding thermotropic liquid-crystal (LC) molecules. We adopt the Imry-Ma argument according to which the lower-temperature phase exhibits a domain-type pattern. The colloids impose a finite degree of orientational ordering even in the isotropic (paranematic) phase. In the ordered phase they give rise to a domain-type structure, resulting in the distorted nematic (speronematic) phase. The RA field opposes the phase separation tendency. With increasing disorder the difference between the paranematic and speronematic ordering decreases. Consequently there is a critical disorder, above which both phases become identical from the orientation point of view, but have different concentrations of colloids. We have also estimated another characteristic value of disorder above which the isotropic phase can exist only in a liquid state, the crystal phase being suppressed completely.
Ključne besede: liquid crystals, transitions, segregation, mixing, random fields, solidification, complex fluids
Objavljeno v DKUM: 07.06.2012; Ogledov: 1530; Prenosov: 97
URL Povezava na celotno besedilo

2.
Alignment of carbon nanotubes in nematic liquid crystals
Paul van der Schoot, Vlad Popa-Nita, Samo Kralj, 2008, izvirni znanstveni članek

Opis: The self-organizing properties of nematic liquid crystals can be used to aligncarbon nanotubes dispersed in them. Because the nanotubes are so much thinner than the elastic penetration length, the alignment is caused by the coupling of the unperturbed director field to the anisotropic interfacial tension of the nanotubes in the nematic host fluid. In order to relate the degree of alignment of the nanotubes to the properties of the nematic liquid crystal, we treat the two components on the same footing and combine Landau-deGennes free energies for the thermotropic ordering of the liquid crystal and for the lyotropic nematic ordering of carbon nanotubes caused by their mutually excluded volumes. The phase ordering of the binary mixture is analyzed as a function of the volume fraction of the carbon nanotubes, the strength of the coupling and the temperature. We find that the degree of ordering of the nanorods is enslaved by the properties of the host liquid and that it can be tuned by raising or lowering the temperature or by increasing or decreasing their concentration. By comparing the theory to recent experiments, we find the anchoring energy of multiwalled carbon nanotubes to be in the range from 10-10 to 10-7 N m-1.
Ključne besede: liquid crystals, nematic crystals, molecular dynamics, stability, elasticity, carbon nanotubes
Objavljeno v DKUM: 07.06.2012; Ogledov: 2023; Prenosov: 89
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici