| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 109
First pagePrevious page12345678910Next pageLast page
1.
Comparison study of four commercial SARS-CoV-2-rapid antigen tests : characterisation of the individual components
Žiga Jelen, Ivan Anžel, Rebeka Rudolf, 2022, original scientific article

Abstract: During the corona virus (COVID-19) pandemic, there was a sharp increase in the need for diagnostic tests that could detect the presence of SARS-CoV-2 virus or its antibodies quickly and reliably. An important type in the group of diagnostic tests are rapid antigen lateral flow immuno-assay (LFIA) tests, which operate on the immuno-chromatographic principle with the lateral flow of analyte. Clinical practice in the last year has shown that such diagnostic tests can be effective in preventing the spread of the SARS-CoV-2 virus.The development, and, thus, the production of the rapid antigen LFIA tests, is influenced by a number of factors that determine their sensitivity and accuracy indirectly. These factors are directly dependent on the type of antibody produced, which is formed as an immune response when infected with the virus. The production of the rapid antigen LFIA tests is associated with the appropriate selection of basic components that determine the type and quality of these tests. The basic components include: substrates and membranes, antigens, antibody labels and compatible buffers. The correct choice of membranes and their materials is crucial to compiling an effective rapid antigen LFIA test. This study therefore presents a comparative analysis of four commercially available SARS-CoV-2-rapid LFIA tests using state-of-the-art characterisation techniques scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectrometry (ICP-OES), environmental scanning electron microscope / energy-dispersive X-ray spectroscopy (ESEM/EDX), Fourier-transform infrared spectroscopy / attenuated total reflection (FTIR/ATR) for the individual components. The obtained results were the starting point for the development and assembling of our own rapid antigen LFIA test based on gold nanoparticles as antibody labels.
Keywords: hitri antigenski testi, komponente, karakterizacija, analize, rapid antigen test, components, characterisation, analysis
Published in DKUM: 26.03.2025; Views: 0; Downloads: 3
URL Link to full text
This document has many files! More...

2.
Unraveling the antibiofilm activity of a new nanogold resin for dentures and epithesis
Vera Ivanović, Danica Popović Antić, Sanja Petrović, Rebeka Rudolf, Peter Majerič, Miloš Lazarević, Igor Djordjević, Vojkan Lazić, Milena Radunović, 2022, original scientific article

Abstract: Dentures and epitheses are mostly made from poly(methyl methacrylate) (PMMA), which does not show antimicrobial properties. They present reservoirs of microorganisms grown in biofilms. The aim of this study is to prepare a PMMA enriched with gold nanoparticles (AuNPs)- PMMA/AuNPs and the examination of its physical, mechanical and antimicrobial properties. The AuNPS were synthetized from HAuCl4 using the ultrasonic spray pyrolysis method with lyophilization. The PMMA/AuNP samples were compared to PMMA samples. Density was measured by pycnometer. Microhardness was evaluated using the Vickers hardness test. Monomicrobial biofilm formation (Streptococcus mitis, Candida albicans, Staphylococcus aureus and Escherichia coli) was measured by colony-forming units (CFUs) and MTT test and visualized by SEM. AuNP release was measured indirectly (the CFUs of the medium around the sample). The density and microhardness of the PMMA/AuNPs were similar to those of the PMMA. CFU and MTT values for the biofilms formed on the PMMA for each of the tested species were higher than those of the biofilms formed on the PMMA/AuNPs. The CFUs of the medium around the sample were similar for both materials. PMMA/AuNPs showed a significant reduction in the monomicrobial biofilms of all tested species. AuNPs are not released from PMMA/AuNPs. Density, indirect measurement of residual monomer and dentures weight were similar between PMMA and PMMA/AuNPs. Microhardness, as a measure of the wear resistance, was also similar between tested discs.
Keywords: PMMA, gold nanoparticles (AuNPs), biofilm, antibiofilm effect
Published in DKUM: 24.03.2025; Views: 0; Downloads: 2
.pdf Full text (4,99 MB)
This document has many files! More...

3.
A nonlinear probabilistic pitting corrosion model of Ni–Ti alloy immersed in shallow seawater
Špiro Ivošević, Gyöngyi Vastag, Nataša Kovač, Peter Majerič, Rebeka Rudolf, 2022, original scientific article

Abstract: The degradation of metal materials in a marine environment represents the consequence of the electrochemical corrosion of metals under the influence of the environment. The application of new materials in the maritime industry requires experimental, real-world research on the form of corrosive damage and the intensity of the corrosion. This paper analyses the pitting corrosion of a rod-shaped nickel–titanium (Ni–Ti) alloy that was produced by means of the continuous casting method. In total, three samples were posted in a real seawater environment and analysed after 6, 12, and 18 months. Pits were detected on the Ni–Ti alloy after 18 months of exposure to the marine environment. The database on pitting corrosion was created by measuring depth in mm, which was performed by means of a nonlinear method, and by the generation of an artificial database of a total of 120, gauged in critical pit areas. The data were obtained by the application of a nonlinear model, and under the assumption that corrosion starts after 12 months of exposure in the corrosive marine environment. The EDX analysis of the Ni–Ti alloy composition inside the pits and on the edges of the pits indicated that the corrosion process in the hole of the pit occurs due to the degradation of the Ni.
Keywords: Ni–Ti alloy, pitting corrosion, seawater, EDX analysis, nonlinear, probabilistic
Published in DKUM: 24.03.2025; Views: 0; Downloads: 5
.pdf Full text (8,28 MB)
This document has many files! More...

4.
Synthesis of complex concentrated nanoparticles by Ultrasonic Spray Pyrolysis and lyophilisation
Lidija Simić, Srečko Stopić, Bernd Friedrich, Matej Zadravec, Žiga Jelen, Rajko Bobovnik, Ivan Anžel, Rebeka Rudolf, 2022, original scientific article

Abstract: The development of new multicomponent nanoparticles is gaining increasing importance due to their specific functional properties, i.e., synthesised new complex concentrated nanoparticles (CCNPs) in the form of powder using ultrasonic spray pyrolysis (USP) and lyophilisation from the initial cast Ag20Pd20Pt20Cu20Ni20 alloy, which was in the function of the material after its catalytic abilities had been exhausted. Hydrometallurgical treatment was used to dissolve the cast alloy, from which the USP precursor was prepared. As a consequence of the incomplete dissolution of the cast alloy and the formation of Pt and Ni complexes, it was found that the complete recycling of the alloy is not possible. A microstructural examination of the synthesised CCNPs showed that round and mostly spherical (not 100%) nanoparticles were formed, with an average diameter of 200 nm. Research has shown that CCNPs belong to the group with medium entropy characteristics. A mechanism for the formation of CCNPs is proposed, based on the thermochemical analysis of element reduction with the help of H2 and based on the mixing enthalpy of binary systems.
Keywords: complex concentrated nanoparticles, ultrasonic spray pyrolysis, lyophilisation, characterization, formation mechanism
Published in DKUM: 24.03.2025; Views: 0; Downloads: 2
.pdf Full text (9,27 MB)
This document has many files! More...

5.
Development of a new AuCuZnGe alloy and determination of its corrosion properties
Rebeka Rudolf, Peter Majerič, Vojkan Lazić, Branimir Grgur, 2022, original scientific article

Abstract: In this paper, we present the idea and development of a new gold-copper-zinc-germanium (AuCuZnGe) alloy, which is related to the method of production and research of its key properties, so that the new Au alloy could be used for jewelry production and in dental technology. The research design was associated with the determination of appropriate chemical composition, manufacturing technology, and performing the characterization. Melting and casting technologies were used to cast the AuCuZnGe alloy while rolling was used to prepare the cylinders and cutting to make square plates with a = 10 mm and thickness of 1 mm. Such plates were provided for corrosion testing. Observation of the plate0 s microstructure was performed with Scanning Electron Microscopy (SEM) equipped by Energy-Dispersive X-ray spectrometry (EDS) and X-ray diffraction (XRD). Corrosion testing involved performing the following measurements: Polarization, the open circuit potentials, and linear polarization resistance. Based on the SEM, EDS, XRD, and results of corrosion testing it can be concluded that the new AuCuZnGe alloy possesses high corrosion stability and can be classified as a high noble alloy.
Keywords: gold alloy, germanium, production, characterization, corrosion properties
Published in DKUM: 24.03.2025; Views: 0; Downloads: 5
.pdf Full text (2,78 MB)
This document has many files! More...

6.
Cast microstructure of a complex concentrated noble alloy ▫$Ag_{20}Pd_{20}Pt_{20}Cu_{20}Ni_{20}▫$
Lidija Simić, Rebeka Rudolf, Peter Majerič, Ivan Anžel, 2022, original scientific article

Abstract: A complex concentrated noble alloy (CCNA) of equiatomic composition (Ag20Pd20Pt20Cu20Ni20 –20 at. %) was studied as a potential high—performance material. The equiatomic composition was used so that this alloy could be classified in the subgroup of high—entropy alloys (HEA). The alloy was prepared by induction melting at atmospheric pressure, using high purity elements. The degree of metastability of the cast state was estimated on the basis of changes in the microstructure during annealing at high temperatures in a protective atmosphere of argon. Characterisation of the metallographically prepared samples was performed using a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS), differential scanning calorimetry (DSC), and X–ray diffraction (XRD). Observation shows that the microstructure of the CCNA is in a very metastable state and multiphase, consisting of a continuous base of dendritic solidification—a matrix with an interdendritic region without other microstructural components and complex spheres. A model of the probable flow of metastable solidification of the studied alloy was proposed, based on the separation of L—melts into L1 (rich in Ni) and L2 (rich in Ag). The phenomenon of liquid phase separation in the considered CCNA is based on the monotectic reaction in the Ag−Ni system.
Keywords: complex concentrated noble alloy, high—entropy alloy, metastability
Published in DKUM: 20.03.2025; Views: 0; Downloads: 7
.pdf Full text (4,00 MB)
This document has many files! More...

7.
Synthesis of Ni/Y2O3 nanocomposite through USP and lyophilisation for possible use as coating
Tilen Švarc, Srečko Stopić, Žiga Jelen, Matej Zadravec, Bernd Friedrich, Rebeka Rudolf, 2022, original scientific article

Abstract: The Ni/Y2O3 catalyst showed high catalytic activity. Based on this, the aim of this study was to create Ni/Y2O3 nanocomposites powder with two innovative technologies, Ultrasonic Spray Pyrolysis (USP) and lyophilisation. In the USP process, thermal decomposition of the generated aerosols in an N2/H2 reduction atmosphere caused a complete decomposition of the nickel (II) nitrate to elemental Ni, which became trapped on the formed Y2O3 nanoparticles. The Ni/Y2O3 nanocomposite particles were captured via gas washing in an aqueous solution of polyvinylpyrrolidone (PVP) in collection bottles. PVP was chosen for its ability to stabilise nano-suspensions and as an effective cryoprotectant. Consequently, there was no loss or agglomeration of Ni/Y2O3 nanocomposite material during the lyophilisation process. The Ni/Y2O3 nanocomposite powder was analysed using ICP-MS, SEM-EDX, and XPS, which showed the impact of different precursor concentrations on the final Ni/Y2O3 nanocomposite particle composition. In a final step, highly concentrated Ni/Y2O3 nanocomposite ink (Ni/Y2O3 > 0.140 g/mL) and test coatings from this ink were prepared by applying them on a white matte photo paper sheet. The reflection curve of the prepared Ni/Y2O3 nanocomposite coating showed a local maximum at 440 nm with a value of 39% reflection. Given that Ni is located on the surface of the Ni/Y2O3 nanocomposite in the elemental state and according to the identified properties, tests of the catalytic properties of this coating will be performed in the future.
Keywords: Ultrasonic Spray Pyrolysis (USP), lyophilisation, Ni/Y2O3 nanocomposite, characterisation, coatings
Published in DKUM: 20.03.2025; Views: 0; Downloads: 6
.pdf Full text (6,07 MB)
This document has many files! More...

8.
Corrosion of NiTiDiscs in different seawater environments
Jelena Pješčić-Šćepanović, Gyöngyi Vastag, Špiro Ivošević, Nataša Kovač, Rebeka Rudolf, 2022, original scientific article

Abstract: This paper gives an approach to the corrosion resistance analysis and changes in the chemical composition of anNiTi alloy in the shape of a disc, depending on different real seawater environments. The NiTi discs were analysed after 6 months of exposure in real seawater environments: the atmosphere, a tidal zone, and seawater. The corrosion tests showed that the highest corrosion rate for the discs is in seawater because this had the highest value of current density, and the initial disc had the most negative potential. Measuring the chemical composition of the discs using inductively coupled plasma and X-ray fluorescence before the experiment and semiquantitative analysis after the experiment showed the chemical composition after 6 months of exposure. Furthermore, the applied principal component analysis and cluster analysis revealed the influence of the different environments on the changes in the chemical composition of the discs. Cluster analysis detected small differences between the similar corrosive influences of the analysed types of environments during the period of exposure. The obtained results confirm that PCA can detect subtle quantitative differences among the corrosive influences of the types of marine environments, although the examined corrosive influences are quite similar. The applied chemometric methods (CA and PCA) are, therefore, sensitive enough to register the existence of slight differences among corrosive environmental influences on the analysed NiTi SMA.
Keywords: NiTi discs, corrosion rate, real seawater environment, cluster analysis (CA), principal component analysis (PCA)
Published in DKUM: 20.03.2025; Views: 0; Downloads: 6
.pdf Full text (5,35 MB)
This document has many files! More...

9.
Oxidation behaviour of microstructurally highly metastable Ag-La alloy
Andraž Jug, Mihael Brunčko, Rebeka Rudolf, Ivan Anžel, 2022, original scientific article

Abstract: A new silver-based alloy with 2 wt.% of lanthanum (La) was studied as a potential candidate for electric contact material. The alloy was prepared by rapid solidification, performed by the melt spinning technique. Microstructural examination of the rapidly solidified ribbons revealed very fine grains of αAg and intermetallic Ag5La particles, which appear in the volume of the grains, as well as on the grain boundaries. Rapid solidification enabled high microstructural refinement and provided a suitable starting microstructure for the subsequent internal oxidation, resulting in fine submicronsized La2O3 oxide nanoparticle formation throughout the volume of the silver matrix (αAg). The resulting nanostructured Ag-La2O3 microstructure was characterised by high-resolution FESEM and STEM, both equipped with EDX. High-temperature internal oxidation of the rapidly solidified ribbons essentially changed the microstructure. Mostly homogeneously dispersed nano-sized La2O3 were formed within the grains, as well as on the grain boundaries. Three mechanisms of internal oxidation were identified: (i) the oxidation of La from the solid solution; (ii) partial dissolution of finer Ag5La particles before the internal oxidation front and oxidation of La from the solid solution; and (iii) direct oxidation of coarser Ag5La intermetallic particles.
Keywords: Ag-La alloy, rapid solidification, metastable microstructure, internal oxidation, characterisation, formation mechanism
Published in DKUM: 20.03.2025; Views: 0; Downloads: 1
.pdf Full text (21,67 MB)
This document has many files! More...

10.
Life cycle assessment (LCA) of the impact on the environment of a cosmetic cream with gold nanoparticles and hydroxylated fullerene ingredients
Rebeka Rudolf, Peter Majerič, Zorka Novak-Pintarič, Andrej Horvat, Damjan Krajnc, 2024, original scientific article

Abstract: This review provides a comprehensive Life Cycle Assessment (LCA) of a cosmetic cream to assess the environmental impacts throughout its entire life cycle, from raw material extraction to disposal, using the methodology according to international standards. The LCA was performed using the OpenLCA 2.0.1 software, with data from the Ecoinvent 3.8 database and relevant literature. The assessment focused on multiple impact categories, including climate change, acidification, eutrophication (freshwater, marine and terrestrial), ecotoxicity (freshwater), human toxicity (cancer and non-cancer), ionizing radiation, land use, ozone depletion, photochemical ozone formation, resource use (fossils, minerals and metals), and water use. The LCA of a cosmetic cream containing gold nanoparticles revealed significant environmental impacts across critical categories. The total climate change potential was 2596.95 kg CO2 eq., driven primarily by nanoparticle synthesis (60.7%) and electricity use (31.9%). Eutrophication of freshwater had the highest normalized result (3.000), with nanoparticle synthesis contributing heavily, indicating the need for improved wastewater treatment. The resource use (minerals and metals) scored 1.856, while the freshwater ecotoxicity reached 80,317.23 CTUe, both driven by the nanoparticle production. The human toxicity potentials were 1.39 × 10−6 CTUh (cancer) and 7.45 × 10−5 CTUh (non-cancer), linked to emissions from synthesis and energy use. The LCA of the cosmetic cream revealed several critical areas of environmental impact. The most significant impacts are associated with gold nanoparticle synthesis and electricity use. Addressing these impacts through optimized synthesis processes, improved energy efficiency, and alternative materials can enhance the product’s sustainability profile significantly.
Keywords: life cycle assessment, cosmetic cream, environmental impacts, gold nanoparticles
Published in DKUM: 17.12.2024; Views: 0; Downloads: 15
.pdf Full text (1,71 MB)
This document has many files! More...

Search done in 0.24 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica