| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Experimental and numerical studies of T-shaped footings
Nihat Kaya, Murat Ornek, 2013, original scientific article

Abstract: In addition to vertical axial loads, the footings of structures are often subjected to eccentric loads caused by the forces of earth pressures, earthquakes, water, wind, etc. Due to eccentric loading, the two edges settle by different amounts, causing the footing to tilt and then the pressure below the footing does not remain uniform. The T-shape is proposed as a footing shape for improving the bearing capacity of shallow footings against the action of eccentric loads. The vertical insertion of the rigid T-shaped footing, into the bearing soil, provides considerable resistance, against both of sliding and overturning, enough to regain the reduction in bearing capacity and increase in settlement. In this study, a series of experimental and numerical results from the ultimate loads and settlement of T-shaped footings are reported. A total of 48 model tests were conducted for investigating the effects of different parameters, such as the problem geometry and soil density. The problem geometry was represented by two parameters, the load eccentricity (e) and the insertion depth (H) of the T-shape into the loose and dense sand soil. After the experimental stage, the numerical analyses were carried out using a plane strain, two-dimensional, finite-element-based computer program. The behaviour of the T-shape footing on sand beds is represented by the hardening soil model. The results of the experimental and numerical studies proved that the ultimate bearing capacity of a footing under eccentric loads could be improved by inserting a vertical central cut-off rigidly connected to the footing bottom. The load settlement curves indicate that the higher load eccentricity results in a decrease in the bearing capacity of the strip footing. It was also proved that the ultimate bearing capacity values can, depending on the soil density, be improved by up to four times that of the loose sand case. This investigation is considered to have provided a useful basis for further research, leading to an increased understanding of the T-shaped footing design.
Keywords: model test, finite-element method, T-shaped footing, eccentric loading, sand
Published in DKUM: 14.06.2018; Views: 1283; Downloads: 63
.pdf Full text (686,03 KB)
This document has many files! More...

2.
Numerical analysis of circular footings on natural clay stabilized with a granular fill
Murat Ornek, Mustafa Laman, Ahmet Demir, Abdulazim Yildiz, 2012, original scientific article

Abstract: In this study, numerical predictions of the scale effect for circular footings supported by partially replaced, compacted, layers on natural clay deposits are presented. The scale- effect phenomenon was analyzed according to the footing sizes. Numerical analyses were carried out using an axisymmetric, two-dimensional, finite-element program. Before conducting the analysis, the validity of the constitutive model was validated using field tests performed by authors with seven different footing diameters up to 0.90 m and with three different partial replacement thicknesses. It is shown that the behavior of the circular footings on natural clay soil and the partial replacement system can be reasonably well represented by the Mohr Coulomb model. The Mohr-Coulomb model parameters were derived from the results of conventional laboratory and field tests. After achieving a good consistency between the results of the test and the numerical analysis, the numerical analyses were continued by increasing the footing diameter up to 25 m, considering the partial replacement thickness up to two times the footing diameter. The results of this parametric study showed that the stabilization had a considerable effect on the bearing capacity of the circular footings and for a given value of H/D the magnitude of the ultimate bearing capacity increases in a nonlinear manner with the footing diameter. The Bearing Capacity Ratio (BCR) was defined to evaluate the improved performance of the reinforced system. It was found, based on numerical and field-test results that the BCR of the partially replaced, natural clay deposits increased with an increase in the footing diameter and there was no significant scale effect of the circular footing resting on natural clay deposits.
Keywords: scale effect, circular footing, field test, finite-element analysis, natural clay, granular fill
Published in DKUM: 13.06.2018; Views: 1236; Downloads: 157
.pdf Full text (554,10 KB)
This document has many files! More...

Search done in 0.02 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica