| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 2 / 2
First pagePrevious page1Next pageLast page
Software based encoder/decoder generation for data exchange optimization in the internet of things : master's thesis
Tjaž Vračko, 2022, master's thesis

Abstract: Efficient encoding of data is an important part of projects in the Internet of Things space. Communication packets must be kept as small as possible in order to minimize the power consumption of devices. In this thesis, an automatic code generation tool, irpack, is proposed that will unify the way packets are defined across all future projects at Institute IRNAS. Using a schema, this tool generates source code of encoders and decoders in target programming languages. A schema evolution system is also defined, by which changes to packets can be compatible across multiple versions. The tool is then applied to a selection of past projects to gauge its usefulness. It is determined that irpack is able to encode the same data into a similar or smaller size packet, while also providing additional versioning information.
Keywords: encoding/decoding, schema, schema evolution, bit packing, code generation
Published in DKUM: 31.01.2022; Views: 185; Downloads: 40
.pdf Full text (2,58 MB)

Energy efficient system for detection of elephants with Machine Learning : master's thesis
Marko Sagadin, 2020, master's thesis

Abstract: Human-Elephant Conflicts are a major problem in terms of elephant conservation. According to WILDLABS, an average of 400 people and 100 elephants are killed every year in India alone because of them. Early warning systems replace the role of human watchers and warn local communities of nearby, potentially life threatening, elephants, thus minimising the Human-Elephant Conflicts. In this Master's thesis we present the structure of an early warning system, which consists of several low-power embedded systems equipped with thermal cameras and a single gateway. To detect elephants from captured thermal images we used Machine Learning methods, specifically Convolutional Neural Networks. The main focus of this thesis was the design, implementation and evaluation of Machine Learning models running on microcontrollers under low-power conditions. We designed and trained several accurate image classification models, optimised them for on-device deployment and compared them against models trained with commercial software in terms of accuracy, inference speed and size. While writing firmware, we ported a part of the TensorFlow library and created our own build system, suitable for the libopencm3 platform. We also implemented reporting of inference results over the LoRaWAN network and described a possible server-size solution. We finally a constructed fully functional embedded system from various development and evaluation boards, and evaluated its performance in terms of power consumption. We show that embedded systems with Machine Learning capabilities are a viable solution to many real life problems.
Keywords: machine learning, microcontroller, on-device inference, thermal camera, low-power system
Published in DKUM: 06.01.2021; Views: 485; Downloads: 91
.pdf Full text (13,35 MB)

Search done in 0.03 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica