| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Development of novel hybrid TPMS cellular lattices and their mechanical characterisation
Nejc Novak, Oraib Al-Ketan, Matej Borovinšek, Lovre Krstulović-Opara, Reza Rowshan, Matej Vesenjak, Zoran Ren, 2021, original scientific article

Abstract: Uniform lattices composed of one type of lattice structure repeated periodically have been extensively investigated in literature for their mechanical and physical properties. Their promising properties, which include a desirable combination of high strength, stiffness and toughness, suggest that hybrid structures made of two or more lattice types can exhibit even more advantageous and desired properties. In this work, the mechanical properties of hybrid cellular structures designed using implicit functions are investigated both experimentally and numerically. Two proposed samples are investigated comprised of a Gyroid and a Diamond unit cells hybridised linearly and radially. First, a finite element computational model was utilised in LS-DYNA to capture the mechanical properties of the additively manufactured constituent lattices (i.e., Gyroid and Diamond) made of stainless steel 316L and tested under dynamic and quasi-static loading conditions. The model was validated for three different relative densities. Then, the validated computational model was then tested to predict the mechanical behaviour of the proposed hybrid lattices. Finally, the proposed hybrid lattices were fabricated and mechanically tested to obtain their mechanical properties. A good agreement between experimental and computational results was achieved. The validated computational models will be used to evaluate other designs of TPMS lattices and their crashworthiness performance for protective equipment applications.
Keywords: cellular materials, triply periodical minimal surface, hybrid lattices, experimental testing, computational modelling, multi-morphology
Published in DKUM: 27.11.2024; Views: 3; Downloads: 5
.pdf Full text (3,99 MB)
This document has many files! More...

2.
Experimental testing of single APM spheres
Matej Vesenjak, Lovre Krstulović-Opara, 2010, published scientific conference contribution

Abstract: Advanced pore morphology (APM) foam, consisting of sphere-like metallic foam elements, proves to have advantageous mechanical properties and unique application adjustability. Since the APM foam manufacturing procedure has been developed recently, the mechanical characterization of these materials is still very limited. Therefore, the purpose of this research was to determine the behaviour of APM spheres and its composites when subjected to quasi-staticand dynamic compressive loading. The results of the performed research have shown valuable mechanical properties of the composite APM foam structures, offering new possibilities for their use in general engineering applications.
Keywords: advanced pore morphology, foam, composite APM foam structures
Published in DKUM: 26.07.2017; Views: 1428; Downloads: 379
.pdf Full text (1,61 MB)
This document has many files! More...

3.
Experimental and numerical evaluation of the mechanical behavior of strongly anisotropic light-weight metallic fiber structures under static and dynamic compressive loading
Olaf Andersen, Matej Vesenjak, Thomas Fiedler, Jehring, Lovre Krstulović-Opara, original scientific article

Abstract: Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.
Keywords: aluminum fiber, fiber structure, orthotropy, sintering, compression, static loading, dynamic loading, energy absorption, numerical simulation
Published in DKUM: 21.06.2017; Views: 1148; Downloads: 571
.pdf Full text (23,30 MB)
This document has many files! More...

4.
Search done in 0.14 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica