| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


61 - 70 / 134
First pagePrevious page3456789101112Next pageLast page
61.
Pomen CIP sistemov čiščenja naprav za delovanje procesnih naprav
Jure Žilič, 2013, undergraduate thesis

Abstract: V diplomskem delu je predstavljen CIP postopek čiščenja cevovodnih sistemov. Hkrati je predstavljena tudi problematika čiščenja in vzdrževanja higiene zaprtih cevovodnih sistemov. S pomočjo primerov je opisana uporaba CIP sistema v farmacevtske in biofarmacevtske namene, predstavljena pa je tudi uporaba različnih komponent, ki združujejo celoten sklop sistema. Delo vključuje tudi opis pomena CIP sistema ter opis priprave čistilnih sredstev in procesne opreme. Navedene so ugotovitve pomena CIP sistema za delovni proces in za sam produkt izdelave.
Keywords: CIP sistem, čiščenje cevovodnih sistemov, procesna oprema, procesne naprave
Published in DKUM: 13.05.2013; Views: 2566; Downloads: 347
.pdf Full text (2,40 MB)

62.
Eksperimentalna in numerična raziskava tokovnih pojavov v aksialnem ventilatorju
Matej Fike, 2013, doctoral dissertation

Abstract: Aksialni ventilatorji so zasnovani tako, da delujejo v stabilnem področju dušilne krivulje. Prostorske oziroma druge omejitve lahko povzročijo, da delovanje ventilatorja preide iz stabilnega v nestabilno področje, kjer se razvijejo kompleksni 3D časovno odvisni tokovni pojavi, ki negativno vplivajo na karakteristiko ventilatorja. Da bi razumeli kompleksne pojave v medlopatičnem kanalu ventilatorja, je bila najprej narejena eksperimentalna in numerična analiza toka okoli osamljenega krila. V nadaljevanju je predstavljena eksperimentalna in numerična raziskava tokovnih pojavov v aksialnem ventilatorju s poudarkom na nestacionarnem delovanju. V okvirju eksperimentalne raziskave je bila posneta dušilna krivulja, ki je bila razdeljena na stabilni in nestabilni del. S PIV merilno metodo so bila posneta tokovna polja pred rotorjem ventilatorja in v medlopatičnem prostoru v različnih delovnih točkah. Raziskovanje je usmerjeno v analizo vrtečega zastoja, ki se razvije pri prehodu iz stabilnega v nestabilno delovanje. Razvita je bila metoda rekonstrukcije vrtečega zastoja, s katero je bila v izbranih delovnih točkah opravljena rekonstrukcija vrtečega zastoja pred rotorjem in v medlopatičnem kanalu. Prav tako je bil izračunan delež povratnega toka v medlopatičnem kanalu. Rezultati meritev, integralni in lokalni, so bili primerjani z rezultati numeričnih simulacij. Izvedene so bile stacionarne in časovno odvisne simulacije z uporabljenima k-ε in SST turbulentnima modeloma. Stabilni del dušilne krivulje je bil primerjan z rezultati stacionarnih simulacij, nestabilni del pa s časovno odvisnimi simulacijami. Ugotovljeno je bilo, da stacionarne simulacije dobro napovejo časovno povprečena tokovna polja in potek stabilnega dela dušilne krivulje. Časovno odvisne simulacije z uporabljenima k-ε in SST turbulentnima modeloma slabo napovejo potek nestabilnega dela dušilne krivulje. Oba omenjena turbulentna modela uspeta napovedati pojav vrtečega zastoja, ne uspeta pa napovedati časovno odvisnega tokovnega polja v primeru osamljenega krila kot tudi v primeru ventilatorja.
Keywords: osamljeno krilo, aksialni ventilator, vrteči zastoj, PIV, numerični izračun
Published in DKUM: 18.03.2013; Views: 2648; Downloads: 278
.pdf Full text (32,12 MB)

63.
Sušenje modrega bakra
Benjamin Cerkvenik, 2012, undergraduate thesis

Abstract: Pri sušilniku z lebdečim slojem vpihujemo sušilni zrak skozi mrežo in skozi vlažen zrnat material, ki se nahaja v sušilniku. Hitrost zraka, s katerim sušimo, mora biti dovolj velika, da se material, ki ga želimo osušiti, dvigne in začne obnašati kot tekočina. Padec tlaka v sušilnem zraku pri prehodu skozi lebdeči sloj je enak približni teži materiala na enoto površine. Za razumevanje in optimiziranje sušenja moramo poznati tokovno polje zraka v sušilniku, saj je od tega odvisen prenos toplote in snovi med delci. Razmere v lebdečem sloju so izotermne zaradi visoke stopnje mešanja delcev, torej ni velikih temperaturnih nihanj. Od tod sledi, da se lebdeča snov suši enakomerno. Snov je v obliki prašnih delcev. Komora, v kateri se nahaja vlažni material, je pod majhnim kotom in lahko vsebuje vibrirajoče ploščice, ki nam pomagajo pri lepljivih materialih. Po končanem sušenju vodimo material iz sušilnika na vibracijsko sito, kjer odstranimo nezaželene grobe delce, ki jih pozneje vodimo v fazo recikliranja. Preostali delci, ki so primerni za uporabo, pa napolnijo vreče, ki jih pripravimo za transport do končnih uporabnikov.
Keywords: sušenje, sušilnik z lebdečim slojem, merilni instrumenti, izboljšava, optimiziranje
Published in DKUM: 21.11.2012; Views: 1676; Downloads: 96
URL Link to full text

64.
Modeliranje kondenzacije in uparjanja vlage na trdnih površinah z računalniško dinamiko tekočin
Uroš Jeke, 2012, master's thesis

Abstract: Vlažen zrak je zmes, ki obdaja večino tehniških naprav in sistemov. Največja količina vlage, ki jo pri konstantnem tlaku in določeni temperaturi sprejme prostornina zraka, se imenuje točka rosišča. Če je količina vlage višja, kot jo lahko sprejme, pride do pojava kondenzacije. Nasproten pojav je uparjanje. Kondenzacija na stenah trdnih površin velikokrat ovira normalno delovanje v tehničnih napravah in je nezaželena. V programskih paketih, ki jih uporabljamo za raziskovalno delo, posebnih uporabniških modelov za upoštevanje gibanja vlažnega zraka ter kondenzacije in uparjanja na trdnih površinah ni na voljo. V nalogi je predstavljen splošen matematično-fizikalni model za implementacijo v obstoječe programske komplete za računalniško dinamiko tekočin. Model smo uporabili v programskem paketu za računalniško dinamiko tekočin Ansys CFX. Simulacije računalniške dinamike tekočin (RDT) smo izvedli za tok vlažnega zraka v 3D pravokotnem kanalu. Zrak teče nad vodno površino, pri čemer prihaja do uparjanja vode. Uparjanje ohlaja vodno površino, dokler se ne vzpostavi ravnotežje med prevodom toplote iz zraka in latentne toplote, ki se porabi za uparjanje. Spremljali smo kombiniran prenos toplote in snovi, ki sta potekala v različnih smereh. Ugotovili smo, da je vpliv naravne konvekcije pri vrednosti Reynoldsovega števila 844 v primerjavi s konvektivnim tokom zanemarljiv. Z brezdimenzijsko kriterialno analizo Sherwoodovega in Nusseltovega števila smo potrdili analogijo med prenosom toplote in snovi. Na medfazni meji vode in zraka lahko predpišemo kot robni pogoj enostransko difuzijo snovi. Vpliv enostranske difuzije vode v tok zraka je zanemarljiv. Toplotna in koncentracijska mejna plast sta si zelo podobni. Koncentracijska mejna plast je malo krajša. V dolžini obravnavanega kanala se nista povsem razvili. Izdelan model je prvi korak h končnemu modelu kondenzacije in uparjanja v programskem paketu Ansys CFX.
Keywords: Računalniška dinamika tekočin, kondenzacija, uparjanje, prenos snovi in toplote, naravna konvekcija, mešana konvekcija, Nusseltovo število, Sherwoodovo število, Stefanov tok
Published in DKUM: 24.09.2012; Views: 3276; Downloads: 467
.pdf Full text (2,63 MB)

65.
Vpliv postopkov odstranjevanja hlapljivih organskih snovi na emisije pri proizvodnji izolacij
Katja Kompolšek, 2012, master's thesis

Abstract: Izhodišča: Namen raziskave je bil najti najprimernejših postopek čiščenja hlapnih organskih spojin iz odpadnih plinov pri proizvodnji izolacij. Kvantitativno analizirati učinkovitost odstranjevanja hlapnih organskih spojin ter na osnovi inženirskih preračunov učinkovitosti čistilnih postopkov dobiti vhodne podatke. Le-te uporabiti kot podatek emisij v modelih razširjenja onesnaževal v ozračju ter raziskati vpliv proizvodnje na okolje in napovedati koncentracije hlapnih organskih spojin v okolici tovarne. Metoda dela: Za čiščenje hlapnih organskih spojin iz odpadnih plinov pri proizvodnji izolacij se je izkazala kot najprimernejša rešitev regenerativno termična oksidacija. Na podlagi izkustvenih podatkov iz člankov, pridobljenih z meritvami na realnih napravah, smo naredili izračune. Podano imamo izmerjeno koncentracijo celokupnega organskega ogljika (TOC) [mg/Nm3] in preračunano emisijo TOC [g/h] pred čiščenjem. Obe proučevani spremenljivki merimo v 3 meritvah, na osnovi 3 izmerjenih vrednosti za vsako spremenljivko izračunamo aritmetično sredino. Postopek čiščenja ima 95 do 99 % -ni učinek. Zanimalo nas je, kolika je pričakovana koncentracija TOC in emisija TOC po čiščenju. Za prikaz razširjanja onesnaževal smo uporabili dva modela. Med poenostavljenimi modeli smo uporabili Gaussov disperzijski model ISC-ISCST3 (EPA, 1995, 1995, Lakes Environmental 2006). Z namenom primerjave in kot dopolnilo smo k rezultatom Gaussovega modela za podroben vpogled širjenja onesnaževal med kompleksnimi modeli izbrali Lagrangeev paketni model CALPUFF, ki ga je razvila skupina znanstvenikov na področju ozračja (ASG - The Atmospheric Studies Group) in ga je sprejela Ameriška agencija za varstvo okolja (U.S. Environmental Protection Agency, U.S. EPA). Meteorološke podatke za oba disperzijska modela smo pridobili od Agencije Republike Slovenije za okolje. Rezultati: Na 6 x 6 kilometrov velikem območju z realno topografijo reliefa smo modelirali razširjanje odpadnih plinov. Modeliranje disperzije smo izvedli za tri iteracije. Prva iteracija je obstoječe stanje pred obnovo, druga iteracija je s 95 % -nim učinkom čiščenja dimnih plinov ter tretja iteracija z 99 % -nim učinkom čiščenja dimnih plinov. Emisije TOC za prvo iteracijo za posamezne izpuste se gibljejo od 0,0093 g/s do 0,3877 g/s, emisije TOC za drugo iteracijo od 0,00046 g/s do 0,095 g/s, emisije TOC za tretjo iteracijo pa od 0,00008 g/s do 0,095 g/s. Vir onesnaženja je industrija (proizvodnja izolacij), gre za t.i. točkast izvor onesnaževanja. V modelu AERMOD smo uporabili tri leta urnih meteoroloških podatkov. Izključno z namenom primerjave in kot dopolnilo k tem rezultatom pa smo za AERMOD in CALPUFF model zbrali še za štiri mesece meteoroloških podatkov. Iz rože vetrov razberemo dominantne smeri vetra. Rezultati obeh modelov kažejo, da se onesnaževalo razširja v dominantni smeri vetra. Sklep: Modeliranje onesnaževal v zraku daje odgovore na vzroke in mehanizme onesnaževanja, predvsem pa odgovor na prostorsko in časovno razporeditev onesnaženja. Dandanes so zaradi svoje preprostosti in cenovne dostopnosti najpogostejši disperzijski modeli tako imenovani Gaussovi modeli. V ozadju teh modelov je veliko poenostavitev in predpostavk v obliki in obnašanju oblaka onesnaževala. Kljub vsemu pa ti modeli dajejo uporabne in fizikalno upravičene rezultate. Dobro dopolnilo k rezultatom Gaussovega modela pa so za podroben vpogled v dogajanje širjenja onesnaževal v ozračju t.i. kompleksni modeli (npr. Lagrangeev disperzijski model). Le-te je smiselno uporabiti, ko se meteorološki parametri spreminjajo v območju, ki ga simuliramo, ter kadar so izvor in mesta, kjer nas koncentracija zanima, postavljeni v zelo razgibanem terenu. Pa tudi takrat, ko imamo daljša obdobja brezvetrja. Slovenija zahteva zaradi svoje geomorfologije uporabo najboljših modelov za spremljanje onesnaženja. Vemo pa, da tudi najboljši modeli ne morajo točno napovedati koncentracije na določenem mestu. Natančnost modela omejujejo na eni str
Keywords: proizvodnja izolacij, hlapne organske spojine, kakovost zraka, odstranjevanje plinastih nečistoč iz odpadnih plinov, disperzijski model
Published in DKUM: 27.07.2012; Views: 2502; Downloads: 132
URL Link to full text

66.
67.
Computational fluid dynamics by boundary-domain integral method
Leopold Škerget, Matjaž Hriberšek, G. Kuhn, 1999, original scientific article

Abstract: A boundary-domain integral method for the solution of general transport phenomena incompressible fluid motion given by the Navier-Stokes equation set is presented. Velocity-vorticity formulation of the conservations is employed. Different integral representations for conservation field functions based on different fundamental solutions are developed. Special attention is given to the use of subdomain technique and Krylov subspace iterative solvers. The computed solutions of several benchmark problems agree well with available experimental and other computational results.
Keywords: fluid mechanics, fluid dynamics, numerical methods, boundary domain integral method, viscous fluid, heat transfer, diffusion-convective solution
Published in DKUM: 01.06.2012; Views: 2232; Downloads: 75
URL Link to full text

68.
Natural convection flows in complex cavities by BEM
Leopold Škerget, Matjaž Hriberšek, Zoran Žunič, 2003, original scientific article

Abstract: A numerical method for the solution of Navier-Stokes equations is developed using an integral representation of the conservation equations. The velocity- vorticity formulation is employed, where the kinematics is given with the Poisson equation for a velocity vector, while the kinetics is represented with the vorticity transport equation. The corresponding boundary-domain integral equations are presented along with discussions of the kinetics and kinematics of the fluid flow problem. THE BEM formulation is developed and tested for natural convection flows in closed cavities with complex geometries.
Keywords: fluid dynamics, natural convection, boundary element method, differential equations, closed cavity
Published in DKUM: 01.06.2012; Views: 1918; Downloads: 85
URL Link to full text

69.
Weakly coupled analysis of a blade in multiphase mixing vessel
Matej Vesenjak, Zoran Ren, Matjaž Hriberšek, 2004, short scientific article

Abstract: Two or more physical systems frequently interact with each other, where the independent solution of one system is impossible without a simultaneous solution of the others. An obvious coupled system is that of a dynamic fluid-structure interaction. š8đ In this paper a computational analysis of thefluid-structure interaction in a mixing vessel is presented. In mixing vessels the fluid can have a significant influence on the deformation of blades during mixing, depending on speed of mixing blades and fluid viscosity.For this purpose a computational weakly coupled analysis has been performed to determine the multiphase fluid influences on the mixing vessel structure. The multiphase fluid field in the mixing vessel was first analyzed with the computational fluid dynamics (CFD) code CFX. The results in the form of pressure were then applied to the blade model, which was the analysed with the structural code MSC.visualNastran forWindows, which is based on the finiteelement method (FEM).
Keywords: fluid mechanics, solid mechanics, coupled problems, computational analysis, two-phase fluid, mixing blade, pressure distribution, finite volume method, finite element method
Published in DKUM: 01.06.2012; Views: 1673; Downloads: 91
URL Link to full text

70.
The wavelet transform for BEM computational fluid dynamics
Jure Ravnik, Leopold Škerget, Matjaž Hriberšek, 2004, original scientific article

Abstract: A wavelet matrix compression technique was used to solve systems of linear equations resulting from BEM applied to fluid dynamics. The governing equations were written in velocity-vorticity formulation and solutions of the resulting systems of equations were obtained with and without wavelet matrix compression. A modification of the Haar wavelet transform, which can transformvectors of any size, is proposed. The threshold, used for making fully populated matrices sparse, was written as a product of a user defined factor and the average value of absolute matrix elements values. Numerical tests were performed to assert, that the error caused by wavelet compression depends linearly on the factor , while the dependence of the error on the share of thresholded elements in the system matrix is highly non-linear. The results also showed that the increasing non-linearity (higher Ra and Re numbervalues) limits the extent of compression. On the other hand, higher meshdensity enables higher compression ratios.
Keywords: fluid mechanics, computational fluid dynamics, boundary element method, wavelet transform, linear systems of equations, velocity vorticity formulation, driven cavity, natural convection, system matrix compression
Published in DKUM: 01.06.2012; Views: 2042; Downloads: 94
URL Link to full text

Search done in 0.22 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica