| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Segmentacija slik celic z algoritmi globokega učenja : magistrsko delo
Gregor Gorjanc, 2022, magistrsko delo

Opis: V magistrskem delu smo se spoznali s problematiko sladkorne bolezni, ki se odraža z nepravilnim obnašanjem celic beta v trebušni slinavki. Seznanili smo se s postopkom označevanja slik Langerhansovih otočkov, ki vsebujejo celice beta. S ciljem avtomatizacije procesa ročnega označevanja slik smo se odločili za uporabo globoke nevronske mreže za segmentacijo slik. Po analizi podatkovnih množic in preobrazbi slikovnih vrst s postopki agregacije v obliko, primerno za strojno učenje slik, smo s pomočjo nenadzorovanega učenja naučili nevronsko mrežo W-Net in ovrednotili rezultate. Mreža je uspešno identificirala zanimiva območja na slikah, vendar s premalo natančnostjo in prevelikimi območji lažno pozitivnih slikovnih točk.
Ključne besede: segmentacija slik, nenadzorovano učenje, W-Net, nevronska mreža, celice beta
Objavljeno v DKUM: 23.01.2023; Ogledov: 739; Prenosov: 116
.pdf Celotno besedilo (10,66 MB)

2.
Implementacija odločitvenih dreves v programskem jeziku Python : diplomsko delo
Gregor Gorjanc, 2020, diplomsko delo

Opis: V diplomskem delu je predstavljeno področje strojnega učenja, del katerega so odločitvena drevesa. Čeprav je odločitveno drevo v osnovi pripomoček za vizualizacijo, nas v sklopu strojnega učenja zanima proces gradnje. Obstaja več algoritmov, ki s pomočjo podatkovnih množic generirajo odločitvena drevesa. V delu je podrobno predstavljeno delovanje algoritma C4.5, čigar implementacija predstavlja jedro naloge. Algoritem je bil implementiran s pomočjo programskega jezika Python. Po osnovni implementacijo je bil izveden proces optimizacije, kjer so preizkušene različne strukture programskega jezika Python. Po optimizaciji je bila izvedena primerjalna analiza delovanja. Izvedena je bila tudi primerjava delovanja implementiranega algoritma z obstoječo implementacijo J48.
Ključne besede: strojno učenje, odločitveno drevo, Python, C4.5
Objavljeno v DKUM: 03.07.2020; Ogledov: 1801; Prenosov: 272
.pdf Celotno besedilo (2,12 MB)

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici