1. |
2. Management and logistics : selected topicsBorut Jereb, Mimo Drašković, Irena Gorenak, Sanja Bauk, Maja Fošner, Bojan Rosi, Drago Pupavac, Darja Topolšek, Oleksandr Dorokhov, Uroš Kramar, Željko Ivanović, Marjan Sternad, Matjaž Knez, Sonja Mlaker Kač, Ludmila Malyaretz, Matevž Obrecht, Tina Cvahte Ojsteršek, 2016, scientific monograph Abstract: The scientific monograph titled Logistics and Management – selected topics is the result of a bilateral project, lasting from 2013 to 2015 and titled “Preparation of a joint scientific monograph in the field of logistics and management issued at the Faculty of Logistics in Celje and the Maritime Faculty of Kotor”. The project was managed by Professor Maja Fošner, PhD, from the Faculty of Logistics at the University of Maribor, and Professor Veselin Draskovic, PdD, from the Maritime Faculty of Kotor, Montenegro.
The main goal of the monograph is to give a comprehensive account of selected areas from the field of logistics and challenges in the development of logistics, such as risk management and supply chains, transport cost, competences in logistics, urban logistics, green logistics, seaport cooperation, logistics network optimisation, logistics in tourism, logistics in performance management, systemic logistics providers and solutions to problems of transportation task.
Wishing to offer a comprehensive presentation of various areas in the field of logistics, the authors of the monograph contributions, who participated on the project (Maja Fošner, Bojan Rosi, Borut Jereb, Marjan Sternad, Veselin Draskovic (ed.), Mimo Draskovic, Sanja Bauk, Senka Sekulac-Ivosevic), invited to cooperation also other researchers from the Faculty of Logistics and the Maritime Faculty of Kotor (Irena Gorenak, Matjaž Knez, Matevž Obrecht, Sonja Mlaker Kač, Tina Cvahte, Darja Topolsek, Drago Pupavac, Zeljko Ivanovic, Oleksandr Dorokhov, and Ludmila Malyaretz) who enriched the present monograph with their contributions.
The monograph is aimed at professional public and anyone interested in the field of logistics. It should also serve as a useful aid in the study of logistics. Keywords: logistics, management, risk management, supply chains, transport cost, urban logistics, green logistics, seaport cooperation, logistics network, optimisation, logistics in tourism, logistics in performance management, systemic logistics providers Published in DKUM: 08.05.2018; Views: 1179; Downloads: 140
Full text (21,21 MB) This document has many files! More... This document is also a collection of 14 documents! |
3. An Engel condition with an additive mapping in semiprime ringsMaja Fošner, Nadeem Ur Rehman, Joso Vukman, 2014, original scientific article Abstract: The main purpose of this paper is to prove the following result: Let n > 1 be a fixed integer, let R be a n!-torsion free semiprime ring, and let f : R -> R be an additive mapping satisfying the relation [f (x), x]n = [[. . . [[f (x), x], x], . . .], x] = 0 for all x = R. In this case [f (x), x] = 0 is fulfilled for all x = R. Since any semisimple Banach algebra (for example, C algebra) is semiprime, this purely algebraic result might be of some interest from functional analysis point of view. Keywords: mathematics, algebra, semiprime rings, derivation Published in DKUM: 27.06.2017; Views: 909; Downloads: 477
Full text (104,05 KB) This document has many files! More... |
4. |
5. |
6. An identity with derivations on rings and Banach algebrasAjda Fošner, Maja Fošner, Joso Vukman, 2008, original scientific article Abstract: The main purpose of this paper is to study the following: Let m, n, and $k_{i}, i = 1, 2, ..., n$ be positive integers and let $R$ be a $2m(m+ k_{1} + k_{2} + ... + k_{n} -1)!$-torsion free semiprime ring. Suppose that there exist derivations $D_{i} : R \to R, i = 1, 2, ..., n + 1$ , such that $D_{1}(x^{m})x^{k_{1}+...+k_{n}}+x^{k_{1}} D_{2}(x^{m})x^{k_{2}+...+k_{n}}+...+x^{k_{1}+...+k_{n}}D_{n+1}(x^{m})=0$ holds for all $x \in R$. Then we prove that $D_{1}+D_{2}+...+D_{n+1}=0$ and that the derivation $k_{1}D_{2}+(k_{1}+k_{2})D_{3}+...+(k_{1}+k_{2}+...+k{n})D_{n+1}$ maps $R$ into its center. We also obtain a range inclusion result of continuous derivations on Banach algebras. Keywords: mathematics, algebra, associative rings and algebras, prime rings, Banach algebras, identities, derivations Published in DKUM: 31.03.2017; Views: 1008; Downloads: 398
Full text (102,89 KB) This document has many files! More... |
7. Aditivne preslikave z dodatnimi lastnostmi na (pol)prakolobarjih in standardnih operatorskih algebrahBenjamin Marcen, 2016, doctoral dissertation Abstract: V doktorski disertaciji si bomo v uvodu ogledali nekaj osnovnih pojmov, definicij ter pomembnejših rezultatov s področja algebre.
Obravnavali bomo funkcionalne enačbe, ki so v zvezi z odvajanji, centralizatorji ter sorodnimi preslikavami na prakolobarjih, polprakolobarjih in standardnih operatorskih algebrah. Na tem področju že vrsto let delujejo tudi slovenski matematiki, ki so s svojimi rezultati pomembno vplivali na razvoj tega področja. Že v osemdesetih letih sta bila močno dejavna na tem področju J. Vukman, M. Brešar, sledili pa so B. Zalar, B. Hvala,
v novejšem času pa M. Fošner, I. Kosi-Ulbl, D. Benkovič, D. Eremita, A. Fošner, N. Peršin ter N. Širovnik.
Osnovno sredstvo pri reševanju funkcionalnih enačb, ki bodo predstavljene v disertaciji, je teorija funkcijskih identitet, ki jo je leta 2000 v cite{87} predstavil M. Brešar. Leta 2007 pa so jo M. Brešar, M. A. Chebotar in W. S. Martindale III tudi podrobneje predstavili v knjigi cite{MB4}.
Teorija funkcijskih identitiet bo v disertaciji predstavljena skupaj s polinomskimi identitietami ter d-prostimi množicami. Keywords: Aditivna preslikava, linearen operator, odvajanje, jordansko odvajanje, jordansko trojno odvajanje, centralizator, funkcionalna enačba, standardna operatorska algebra, prakolobar, polprakolobar, Banachov prostor, involucija. Published in DKUM: 21.10.2016; Views: 1725; Downloads: 121
Full text (671,60 KB) |
8. Nekateri rezultati o odvajanjih na prakolobarjihAna Marija Varšnik, 2016, undergraduate thesis Abstract: Diplomsko delo z naslovom Nekateri rezultati o odvajanjih na prakolobarjih je razdeljeno na dve poglavji.
Prvo poglavje je namenjeno osnovnim pojmom, ki jih potrebujemo za razumevanje diplomskega dela. V podrazdelkih smo se osredotočili, med drugim, na pojme grupa, kolobar, ideal, algebra, prakolobar, polprakolobar, odvajanje in Jordansko odvajanje.
V drugem poglavju, ki je cilj diplomskega dela, bodo predstavljeni izreki in dokazi, ki jih potrebujemo za dokaz klasičnega rezultata I.N.Hersteina, ki pravi, da je vsako Jordansko odvajanje na prakolobarju s karakteristiko različno od dva odvajanje. Prav tako bomo zapisali Posnerjev izrek, ki pravi, da produkt dveh neničelnih odvajanj na prakolobarju s
karakteristiko različno od dva ni odvajanje. Keywords: kolobar, grupa, prakolobar, polprakolobar, ideal, algebra, odvajanje, Jordansko odvajanje. Published in DKUM: 30.08.2016; Views: 983; Downloads: 57
Full text (281,58 KB) |
9. On some functional equations arising from (m, n)-Jordan derivations and commutativity of prime ringsMaja Fošner, Joso Vukman, 2012, original scientific article Abstract: The purpose of this paper is to prove the following result. Let ▫$m, n ge 1$▫ be some fixed integers with ▫$m ne n$▫, and let ▫$R$▫ be a prime ring with ▫$(m+n)^2 < text{char} (R)$▫. Suppose a nonzero additive mapping ▫$D : R to R$▫ exists satisfying the relation ▫$(m+n)^2 D(x^3) = m(3m+n) D(x)x^2 + 4mnxD(x)x + n(3n+m)x^2 D(x)$▫ for all ▫$x in R$▫. In this case ▫$D$▫ is a derivation and ▫$R$▫ is commutative. Keywords: matematika, prakolobar, polprakolobar, odvajanje, jordansko odvajanje, levo odvajanje, mathematics, prime ring, semiprime ring, derivation, Jordan derivation, left dderivation, left Jordan derivation, (m, n)-Jordan drivation Published in DKUM: 10.07.2015; Views: 897; Downloads: 82
Link to full text |
10. Identities with generalized derivations in prime ringsMaja Fošner, Joso Vukman, 2012, original scientific article Abstract: In this paper we investigate identities with two generalized derivations in prime rings. We prove, for example, the following result. Let ▫$R$▫ be a prime ring of characteristic different from two and let ▫$F_1, F_2 colon R to R$▫ be generalized derivations satisfying the relation ▫$F_1(x)F_2(x) + F_2(x)F_1(x) = 0$▫ for all ▫$x in R$▫. In this case either ▫$F_1 = 0$▫ or ▫$F_2 = 0$▫. Keywords: matematika, prakolobar, polprakolobar, odvajanje, posplošeno odvajanje, mathematics, prime ring, semiprime ring, derivation, generalized derivation Published in DKUM: 10.07.2015; Views: 860; Downloads: 92
Link to full text |