| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Combined effects of metakaolin and hybrid fibers on self-compacting concrete
Natalija Bede Odorčić, Gregor Kravanja, 2022, izvirni znanstveni članek

Opis: There is a need to develop new construction materials with improved mechanical performance and durability that are low-priced and have environmental benefits at the same time. This paper focuses on the rheological, mechanical, morphological, and durability properties of synthetic and steel fiber reinforced self-compacting concrete (SCC) containing 5–15% metakaolin (M) by mass as a green replacement for Portland cement. Testing of the fresh mixes included a slump-flow test, density, and porosity tests. Mechanical properties were determined through compression and flexural strength. A rapid chloride penetrability test (RCPT) and the chloride migration coefficient were used to assess the durability of the samples. A scanning electron microscope (SEM) with energy dispersion spectrometry (EDS) was used to study the concrete microstructure and the interfacial transition zone (ITZ). The results show that a combination of metakaolin and hybrid fibers has a negative effect on the flowability of SCC. In contrast, the inclusion of M and hybrid fibers has a positive effect on the compressive and flexural strength of SCC. The fracture of SCC samples without fibers was brittle and sudden, unlike the fiber-reinforced SCC samples, which could still transfer a considerable load with increasing crack mouth opening deflection. Overall, the chloride migration coefficients were reduced by up to 71% compared to the control mix. The chloride reduction is consistent with the resulting compact concrete microstructure, which exhibits a strong bond between fibers and the concrete matrix.
Ključne besede: self-compacting concrete, synthetic and steel fibers, metakaolin, rheology, mechanical properties, chloride penetration, SEM-EDS
Objavljeno v DKUM: 12.03.2025; Ogledov: 0; Prenosov: 0
.pdf Celotno besedilo (6,46 MB)
Gradivo ima več datotek! Več...

2.
Novel ultra-high-performance concrete (UHPC) enhanced by superhydrophobic and self-luminescent features
Ahmad Rizwan Mumtaz, Natalija Bede Odorčić, Núria Garro, Samo Lubej, Andrej Ivanič, Antonio Comite, Marcello Pagliero, Gregor Kravanja, 2024, izvirni znanstveni članek

Opis: This study explores the potential of using basalt reinforced UHPC by incorporating simultaneously self-cleaning and self-luminescent features, paving the way for sustainable advancements in civil engineering. New green formulations of UHPC were developed by integrating supplementary cementitious materials and optimizing water to the binder ratio, followed by using basalt fibers to enhance strength and ductility. The fabricated samples with high particle-packing density exhibit sufficient workability and compressive strength up to 136 MPa, and, when incorporating basalt fibers, a notable reduction in brittleness. The inner microstructure of basalt fibers was observed to be smooth, homogeneously distributed, and well adhered to the UHPC matrix. To ensure the desired long-lasting visual appearance of decorative UHPC and reduce future maintenance costs, a time-effective strategy for creating a light-emitting biomimetic surface design was introduced. The samples exhibit high surface roughness, characterized by micro to nano-scale voids, displaying superhydrophobicity with contact angles reaching up to 155.45°. This is accompanied by roll-off angles decreasing to 7.1°, highlighting their self-cleaning features. The self-luminescence feature showcased intense initial light emission, offering a potential energy-efficient nighttime lighting solutio
Ključne besede: UHPC, basalt fibers, mechanical properties, morphology, superhydrophobic, self-luminescence
Objavljeno v DKUM: 29.01.2024; Ogledov: 368; Prenosov: 446
.pdf Celotno besedilo (14,47 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici