1. Razvoj računalniške igre UnoNick Srebot, 2025, undergraduate thesis Abstract: Namen diplomskega dela je bil razvoj digitalne različice namizne igre Uno z večigralsko funkcionalnostjo. Rešitev je bila implementacija arhitekture odjemalec-strežnik, ki je obravnavala pogoste težave pri razvoju večigralskih iger, kot so sinhronizacija igralcev, upravljanje stanja in posodobitve v realnem času. Za opredelitev mehanike igre in primarnega uporabniškega vmesnika je bilo uporabljeno ogrodje libGDX. Zasnovo lokalnega strežnika je omogočalo okolje Node.js, upravljanje z zbirko podatkov pa PostgreSQL. Rezultat je bila celovita in robustna aplikacija, ki je vse svoje komponente integrirala v kohezivno celoto, hkrati pa izpolnila tehnične zahteve in zahteve glede uporabniške izkušnje. Keywords: razvoj računalniških iger, Uno, večigralstvo, libGDX, odjemalec-strežnik Published in DKUM: 15.10.2025; Views: 0; Downloads: 10
Full text (3,88 MB) |
2. Razvoj računalniških iger v ogrodju UEFNNejc Miholic, 2025, undergraduate thesis Abstract: Diplomsko delo predstavlja ustvarjanje UGC (User generated content) za igro Fortnite. Pri tem smo uporabili orodje UEFN (Unreal Editor for Fortnite), v katerem smo ustvarili vse od okolja do objektov, postavili naprave in spoznali programski jezik Verse. Igra je bila v celoti testirana in objavljena v Fortnite portal. Rezultate smo analizirali in prikazali celotno statistiko igre. Keywords: razvoj, igre, UEFN, UGC, Fortnite Published in DKUM: 15.10.2025; Views: 0; Downloads: 3
Full text (3,33 MB) |
3. Performance comparison of single-objective evolutionary algorithms implemented in different frameworksMiha Ravber, Marko Šmid, Matej Moravec, Marjan Mernik, Matej Črepinšek, 2025, original scientific article Abstract: Fair comparison with state-of-the-art evolutionary algorithms is crucial, but is obstructed by differences in problems, parameters, and stopping criteria across studies. Metaheuristic frameworks can help, but often lack clarity on algorithm versions, improvements, or deviations. Some also restrict parameter configuration. We analysed source codes and identified inconsistencies between implementations. Performance comparisons across frameworks, even with identical settings, revealed significant differences, sometimes even with the authors’ own code. This questions the validity of comparisons using such frameworks. We provide guidelines to improve open-source metaheuristics, aiming to support more credible and reliable comparative studies. Keywords: metaheuristics, evolutionary algorithm, metaheuristic optimization framework, algorithm comparison, benchmarking Published in DKUM: 02.10.2025; Views: 0; Downloads: 2
Full text (3,89 MB) |
4. Uporaba ogrodja Fastify in njegovih vtičnikov : diplomsko deloNik Damiš, 2025, undergraduate thesis Abstract: Fastify je lahkotno in zmogljivo Node.js ogrodje za razvoj strežniških aplikacij, ki združuje zmogljivo jedro z robustnim sistemom vtičnikov. Zaradi hitrosti, varnosti in enostavne razširljivosti predstavlja konkurenčno alternativo obsežnejšim ogrodjem. Namen diplomske naloge je podrobno predstaviti arhitekturo Fastifyja, vključno s sistemom vtičnikov, hierarhijo kontekstov, z življenjskim ciklom zahtev ter razložiti ključne koncepte, kot so dekoratorji, kljuke in JSON-sheme. Raziskava primerja Fastify z drugimi Node.js ogrodji glede na hitrost in odzivnost, kjer se najbolje izkažejo lahkotna ogrodja. Praktični del vključuje razvoj modularne aplikacije s avtentikacijo, avtorizacijo, podatkovno bazo, nalaganjem datotek in s Swagger dokumentacijo. Keywords: Fastify, Node.js, Ogrodja, JavaScript Published in DKUM: 23.09.2025; Views: 0; Downloads: 7
Full text (1,51 MB) |
5. Razvoj mobilne aplikacije MorphIgor Polajžer, 2025, undergraduate thesis Abstract: Diplomsko delo se ukvarja z razvojem mobilne aplikacije, ki z uporabo tehnologij velikih jezikovnih modelov in igrifikacije uporabnikom svetuje na področju osebne rasti. Sestavljeno je iz teoretičnega in praktičnega dela. Teoretični del vsebuje pregled obstoječih aplikacij, ki izrabljajo velike jezikovne modele ter pregled uporabljenih tehnologij. V praktičnem delu je opisan proces načrtovanja in razvoja mobilne aplikacije, izzivi pri tem delu in njihovo reševanje ter primerjava razvoja mobilnih aplikacij, ki izrabljajo velike jezikovne modele in razvoja klasičnih mobilnih aplikacij. Keywords: umetna inteligenca, veliki jezikovni model, igrifikacija, mobilna aplikacija, osebna rast Published in DKUM: 04.09.2025; Views: 0; Downloads: 47
Full text (3,86 MB) |
6. Razvoj mobilne aplikacije za učenje jezikov z uporabo učnih karticNik Drozg, 2025, undergraduate thesis Abstract: V diplomskem delu smo predstavili razvoj mobilne aplikacije za učenje tujih besed s pomočjo učnih kartic in algoritma razmaknjenega ponavljanja. Aplikacijo smo zasnovali tako, da je delovala popolnoma brez internetne povezave ter omogočala ustvarjanje in urejanje tematskih seznamov besed, prilagajanje učnih parametrov in spremljanje napredka. Razvoj je potekal v okolju Flutter, pri čemer smo uporabili preizkušene knjižnice za lokalno shranjevanje podatkov, upravljanje stanja in uvoz vsebine. Rezultat je bila enostavna, prilagodljiva in učinkovita rešitev za individualno učenje besedišča. Keywords: mobilna aplikacija, učenje jezikov, učne kartice, razmaknjeno ponavljanje, Flutter Published in DKUM: 04.09.2025; Views: 0; Downloads: 14
Full text (2,73 MB) This document has many files! More... |
7. A case study on the design and implementation of a platform for hand rehabilitationTomaž Kosar, Lu Zhenli, Marjan Mernik, Marjan Horvat, Matej Črepinšek, 2021, original scientific article Abstract: Rehabilitation aids help people with temporal or permanent disabilities during the
rehabilitation process. However, these solutions are usually expensive and, consequently, inaccessible
outside of professional medical institutions. Rapid advances in software development, Internet of
Things (IoT), robotics, and additive manufacturing open up a way to affordable rehabilitation
solutions, even to the general population. Imagine a rehabilitation aid constructed from accessible
software and hardware with local production. Many obstacles exist to using such technology, starting
with the development of unified software for custom-made devices. In this paper, we address
open issues in designing rehabilitation aids by proposing an extensive rehabilitation platform. To
demonstrate our concept, we developed a unique platform, RehabHand. The main idea is to use
domain-specific language and code generation techniques to enable loosely coupled software and
hardware solutions. The main advantage of such separation is support for modular and a higher
abstraction level by enabling therapists to write rehabilitation exercises in natural, domain-specific
terminology and share them with patients. The same platform provides a hardware-independent
part that facilitates the integration of new rehabilitation devices. Experience in implementing
RehabHand with three different rehabilitation devices confirms that such rehabilitation technology
can be developed, and shows that implementing a hardware-independent rehabilitation platform
might not be as challenging as expected. Keywords: movement observation, rehabilitation aid, assistive technology, robot-assisted rehabilitation, additive manufacturing, local production, human-computer interaction, code generation, domain-specific languages Published in DKUM: 16.06.2025; Views: 0; Downloads: 7
Full text (2,18 MB) This document has many files! More... |
8. Overcoming stagnation in metaheuristic algorithms with MsMA’s adaptive meta-level partitioningMatej Črepinšek, Marjan Mernik, Miloš Beković, Matej Pintarič, Matej Moravec, Miha Ravber, 2025, original scientific article Abstract: Stagnation remains a persistent challenge in optimization with metaheuristic algorithms (MAs), often leading to premature convergence and inefficient use of the remaining evaluation budget. This study introduces , a novel meta-level strategy that externally monitors MAs to detect stagnation and adaptively partitions computational resources. When stagnation occurs, divides the optimization run into partitions, restarting the MA for each partition with function evaluations guided by solution history, enhancing efficiency without modifying the MA’s internal logic, unlike algorithm-specific stagnation controls. The experimental results on the CEC’24 benchmark suite, which includes 29 diverse test functions, and on a real-world Load Flow Analysis (LFA) optimization problem demonstrate that MsMA consistently enhances the performance of all tested algorithms. In particular, Self-Adapting Differential Evolution (jDE), Manta Ray Foraging Optimization (MRFO), and the Coral Reefs Optimization Algorithm (CRO) showed significant improvements when paired with MsMA. Although MRFO originally performed poorly on the CEC’24 suite, it achieved the best performance on the LFA problem when used with MsMA. Additionally, the combination of MsMA with Long-Term Memory Assistance (LTMA), a lookup-based approach that eliminates redundant evaluations, resulted in further performance gains and highlighted the potential of layered meta-strategies. This meta-level strategy pairing provides a versatile foundation for the development of stagnation-aware optimization techniques. Keywords: optimization, metaheuristics, stagnation, meta-level strategy, algorithmic performance, duplicate solutions Published in DKUM: 30.05.2025; Views: 0; Downloads: 4
Full text (1,47 MB) |
9. Tackling blind spot challenges in metaheuristics algorithms through exploration and exploitationMatej Črepinšek, Miha Ravber, Luka Mernik, Marjan Mernik, 2025, original scientific article Abstract: This paper defines blind spots in continuous optimization problems as global optima that are inherently difficult to locate due to deceptive, misleading, or barren regions in the fitness landscape. Such regions can mislead the search process, trap metaheuristic algorithms (MAs) in local optima, or hide global optima in isolated regions, making effective exploration particularly challenging. To address the issue of premature convergence caused by blind spots, we propose LTMA+ (Long-Term Memory Assistance Plus), a novel meta-approach that enhances the search capabilities of MAs. LTMA+ extends the original Long-Term Memory Assistance (LTMA) by introducing strategies for handling duplicate evaluations, shifting the search away from over-exploited regions and dynamically toward unexplored areas and thereby improving global search efficiency and robustness. We introduce the Blind Spot benchmark, a specialized test suite designed to expose weaknesses in exploration by embedding global optima within deceptive fitness landscapes. To validate LTMA+, we benchmark it against a diverse set of MAs selected from the EARS framework, chosen for their different exploration mechanisms and relevance to continuous optimization problems. The tested MAs include ABC, LSHADE, jDElscop, and the more recent GAOA and MRFO. The experimental results show that LTMA+ improves the success rates for all the tested MAs on the Blind Spot benchmark statistically significantly, enhances solution accuracy, and accelerates convergence to the global optima compared to standard MAs with and without LTMA. Furthermore, evaluations on standard benchmarks without blind spots, such as CEC’15 and the soil model problem, confirm that LTMA+ maintains strong optimization performance without introducing significant computational overhead. Keywords: optimization, metaheuristics algorithm, algorithmic performance, duplicate solutions, nonrevisited solutions, blind spots, LTMA Published in DKUM: 19.05.2025; Views: 0; Downloads: 4
Full text (4,16 MB) |
10. Leveraging grammarware for active video game developmentMatej Črepinšek, Tomaž Kosar, Matej Moravec, Miha Ravber, Marjan Mernik, 2025, original scientific article Abstract: This paper presents a grammarware-based approach to developing active video games (AVGs) for sensor-driven training systems. The GCGame domain-specific language (DSL) is introduced to define game logic, sensor interactions, and timing behavior formally. This approach ensures cross-platform consistency, supports real-time configurability, and simplifies the integration of optimization and visualization tools. The presented system, called GCBLE, serves as a case study, demonstrating how grammarware enhances modularity, maintainability, and adaptability in real-world physical interaction applications. The results highlight the potential of a DSL-driven design to bridge the gap between developers and domain experts in embedded interactive systems Keywords: active video games, grammarware, internet of things, DSL, procedural level generation, evolutionary computation, game controllers Published in DKUM: 23.04.2025; Views: 0; Downloads: 6
Full text (4,32 MB) |