| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 1329
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
1.
2.
Vial wall effect on freeze-drying speed
Matjaž Ramšak, Matjaž Hriberšek, 2024, izvirni znanstveni članek

Opis: The vial wall thermal conductivity and thickness effect on freeze-drying speed is simulated. A 2D axisymmetric numerical simulation of Mannitol freeze-drying is employed using the boundary element method. The originality of the presented approach lies in the simulation of heat transfer in the vial walls as an additional computational domain in contrast to the typical methodology without a vial wall. The numerical model was validated using our measurements and the measurements from the literature. Increasing the glass vial thickness from 1 mm to 2 mm has been found as the major factor in primary drying time, increasing the gravimetrical Kv up to 20 % for all the simulated chamber pressures. The effect of thermal conductivity was simulated using a polymer and aluminium vial replacing the standard glass vial of the same thickness. The polymer vial‘s decreased Kv value is 5.6 % at a low chamber pressure of 50 mTorr, and 12.2 % at 400 mTorr, which is in excellent agreement with the experiment. Using higher conductivity materials, for example, aluminium, only 3.7 % and 2.3 % Kv increase were computed for low and high chamber pressures respectively.
Ključne besede: freeze-drying, lyophilization speedup, vial heat conductivity, vial wall thickness, boundary element method
Objavljeno v DKUM: 16.04.2024; Ogledov: 83; Prenosov: 5
.pdf Celotno besedilo (1,88 MB)
Gradivo ima več datotek! Več...

3.
Bioactive functional nanolayers of chitosan-lysine surfactant with single- and mixed-protein-repellent and antibiofilm properties for medical implants
Urban Ajdnik, Lidija Fras Zemljič, Olivija Plohl, Lourdes Pérez, Janja Trček, Matej Bračič, Tamilselvan Mohan, 2021, izvirni znanstveni članek

Opis: Medical implant-associated infections resulting from biofilm formation triggered by unspecific protein adsorption arethe prevailing cause of implant failure. However, implant surfaces rendered with multifunctional bioactive nanocoatings offer apromising alternative to prevent the initial attachment of bacteria and effectively interrupt biofilm formation. The need to researchand develop novel and stable bioactive nanocoatings for medical implants and a comprehensive understanding of their properties incontact with the complex biological environment are crucial. In this study, we developed an aqueous stable and crosslinker-freepolyelectrolyte−surfactant complex (PESC) composed of a renewable cationic polysaccharide, chitosan, a lysine-based anionicsurfactant (77KS), and an amphoteric antibiotic, amoxicillin, which is widely used to treat a number of infections caused by bacteria.We successfully introduced the PESC as bioactive functional nanolayers on the“model”and“real”polydimethylsiloxane (PDMS)surfaces under dynamic and ambient conditions. Besides their high stability and improved wettability, these uniformly depositednanolayers (thickness: 44−61 nm) with mixed charges exhibited strong repulsion toward three model blood proteins (serumalbumin,fibrinogen, andγ-globulin) and their competitive interactions in the mixture in real-time, as demonstrated using a quartzcrystal microbalance with dissipation (QCM-D). The functional nanolayers with a maximum negative zeta potential (ζ:−19 to−30mV at pH 7.4), water content (1628−1810 ng cm−2), and hydration (low viscosity and elastic shear modulus) correlated with themass, conformation, and interaction nature of proteins. In vitro antimicrobial activity testing under dynamic conditions showed thatthe charged nanolayers actively inhibited the growth of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcusaureus) bacteria compared to unmodified PDMS. Given the ease of fabrication of multifunctional and charged biobased coatingswith simultaneous protein-repellent and antimicrobial activities, the limitations of individual approaches could be overcome leadingto a better and advanced design of various medical devices (e.g., catheters, prosthetics, and stents).
Ključne besede: silicone implants, protein-repellent, antimicrobial, chitosan, lysine, bioactive coatings, adsorption, QCM-D
Objavljeno v DKUM: 15.04.2024; Ogledov: 73; Prenosov: 2
.pdf Celotno besedilo (4,24 MB)
Gradivo ima več datotek! Več...

4.
A computational model for analysing the dry rolling/sliding wear behaviour of polymer gears made of POM
Aljaž Ignatijev, Matej Borovinšek, Srečko Glodež, 2024, izvirni znanstveni članek

Opis: This study presents a computational model to determine the wear behaviour of polymer gears. Using PrePoMax finite element numerical calculation software, a proposed computational model was built to predict dry rolling/sliding wear behaviour based on Archard’s wear model. This allows the calculation of the wear depth in each loading cycle with constant mesh updating using the finite element method. The developed computational model has been evaluated on a spur gear pair, where the pinion made of POM was meshed with a support gear made of steel. The computational results obtained were compared with the analytical results according to the VDI 2736 guidelines. Based on this comparison, it was concluded that the proposed computational model could be used to simulate the wear behaviour of contacting mechanical elements like gears, bearings, etc. The main advantage of the model, if compared to the standardised procedure according to the VDI 2736 guidelines, is the geometry updating after a chosen number of loading cycles, which enables a more accurate prediction of wear behaviour under rolling/sliding loading conditions.
Ključne besede: polymer gears, rolling/sliding contact, wear, computational modelling
Objavljeno v DKUM: 12.04.2024; Ogledov: 41; Prenosov: 0
.pdf Celotno besedilo (3,67 MB)
Gradivo ima več datotek! Več...

5.
Colloidal solutions as advanced coatings for active packaging development: focus on PLA systems
Athira John, Klementina Pušnik Črešnar, Dimitrios Bikiaris, Lidija Fras Zemljič, 2023, pregledni znanstveni članek

Ključne besede: food packaging, active packaging, colloids, PLA
Objavljeno v DKUM: 11.04.2024; Ogledov: 75; Prenosov: 1
.pdf Celotno besedilo (13,52 MB)
Gradivo ima več datotek! Več...

6.
7.
8.
9.
10.
Iskanje izvedeno v 1.28 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici