| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
Ribotype classification of Clostridioides difficile isolates Is not predictive of the amino acid sequence diversity of the toxin virulence factors TcdA and TcdB
Zhenghui Li, Kwok Lee, Urvi Rajyaguru, C. Hal Jones, Sandra Janežič, Maja Rupnik, Annaliesa S. Anderson, Paul Liberator, 2020, izvirni znanstveni članek

Opis: Clostridioides (Clostridium) difficile is the most commonly recognized cause of infectious diarrhea in healthcare settings. Currently there is no vaccine to prevent initial or recurrent C. difficile infection (CDI). Two large clostridial toxins, TcdA and TcdB, are the primary virulence factors for CDI. Immunological approaches to prevent CDI include antibody-mediated neutralization of the cytotoxicity of these toxins. An understanding of the sequence diversity of the two toxins expressed by disease causing isolates is critical for the interpretation of the immune response to the toxins. In this study, we determined the whole genome sequence (WGS) of 478 C. difficile isolates collected in 12 countries between 2004 and 2018 to probe toxin variant diversity. A total of 44 unique TcdA variants and 37 unique TcdB variants were identified. The amino acid sequence conservation among the TcdA variants (>98%) is considerably greater than among the TcdB variants (as low as 86.1%), suggesting that different selection pressures may have contributed to the evolution of the two toxins. Phylogenomic analysis of the WGS data demonstrate that isolates grouped together based on ribotype or MLST code for multiple different toxin variants. These findings illustrate the importance of determining not only the ribotype but also the toxin sequence when evaluating strain coverage using vaccine strategies that target these virulence factors. We recommend that toxin variant type and sequence type (ST), be used together with ribotype data to provide a more comprehensive strain classification scheme for C. difficile surveillance during vaccine development objectives.
Ključne besede: Clostridioides difficile, Clostridium difficile, TCDB, TcdA, vaccines, whole genome sequencing
Objavljeno v DKUM: 28.01.2025; Ogledov: 0; Prenosov: 5
.pdf Celotno besedilo (1,21 MB)
Gradivo ima več datotek! Več...

3.
Why? - Successful Pseudomonas aeruginosa clones with a focus on clone C
Changhan Lee, Jens Klockgether, Sebastian Fischer, Janja Trček, Burkhard Tümmler, Ute Römling, 2020, pregledni znanstveni članek

Opis: The environmental species Pseudomonas aeruginosa thrives in a variety of habitats. Within the epidemic population structure of P. aeruginosa, occassionally highly successful clones that are equally capable to succeed in the environment and the human host arise. Framed by a highly conserved core genome, individual members of successful clones are characterized by a high variability in their accessory genome. The abundance of successful clones might be funded in specific features of the core genome or, although not mutually exclusive, in the variability of the accessory genome. In clone C, one of the most predominant clones, the plasmid pKLC102 and the PACGI-1 genomic island are two ubiquitous accessory genetic elements. The conserved transmissible locus of protein quality control (TLPQC) at the border of PACGI-1 is a unique horizontally transferred compository element, which codes predominantly for stress-related cargo gene products such as involved in protein homeostasis. As a hallmark, most TLPQC xenologues possess a core genome equivalent. With elevated temperature tolerance as a characteristic of clone C strains, the unique P. aeruginosa and clone C specific disaggregase ClpG is a major contributor to tolerance. As other successful clones, such as PA14, do not encode the TLPQC locus, ubiquitous denominators of success, if existing, need to be identified.
Ključne besede: disaggregase, FtsH, genomic island, protein homeostasis, pulsed field gel electrophoresis, whole genome sequencing
Objavljeno v DKUM: 28.01.2025; Ogledov: 0; Prenosov: 5
.pdf Celotno besedilo (5,39 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici