1. Public handling of protective masks from use to disposal and recycling options to new productsKatarina Remic, Alen Erjavec, Julija Volmajer Valh, Sonja Šterman, 2022, izvirni znanstveni članek Opis: A study was conducted on the waste of disposable surgical masks and their problematic impact on the environment. The studies examined have shown the negative effects on the environment that are likely to occur and those that have already occurred. In this article, society's relationship to the potential recycling of disposable surgical masks is considered and projected onto the possibilities of the cradle-to-cradle design approach. The development of a product from recycled surgical masks is driven by two different surveys. The first focuses on wear and disposal habits, and the second on the relationship to recycling. As a result, the flooring was developed with thermally treated recycled surgical masks replacing the filler layer. The goal of the product design was to improve the long-term life cycle analysis of a waste surgical mask. Ključne besede: maske, medicinski odpadki, okolje, recikliranje izdelka z dodano vrednostjo, analiza življenjskega cikla, masks, medical waste, recycling added-value product, life-cycle-analysis Objavljeno v DKUM: 26.03.2025; Ogledov: 0; Prenosov: 0
Povezava na celotno besedilo Gradivo ima več datotek! Več... |
2. Enhancing utilization of municipal solid waste bottom ash by the stabilization of heavy metalsFilip Kokalj, Vesna Alivojvodić, Luka Lešnik, Nela Petronijević, Dragana Radovanović, Niko Samec, 2025, izvirni znanstveni članek Opis: Waste-to-energy (WtE) is a key part of modern waste management. In the European Union, approximately 500 WtE plants process more than 100 million tons of waste yearly, while globally, more than 2700 plants handle over 500 million tons. Roughly 20% of the waste processed is bottom ash (BA). However, this ash can contain heavy metals in concentrations that may render it hazardous. This paper presents a study focusing on stabilizing municipal solid waste incineration BA using simple and industrially viable treatments. The Slovenian WtE plant operator wishes to install the stabilization process; thus, the samples obtained from the plant were treated (1) with a CO2 gas flow, (2) with water spraying, and (3) with a combination of water spraying and a CO2 gas flow under laboratory conditions. Thermodynamic calculations were applied to define potential reactions during the treatment processes in the temperature range from 0 to 100 ◦C and to define the equilibrium composition of the treated ash with additions of CO2 and water. The standard leaching test EN 12457-4 of treated ash shows a reduction of over 40% in barium concentration and over 30% in lead concentration in leachates. Ključne besede: heavy metals, waste-to-energy, bottom ash, leachate, reuse Objavljeno v DKUM: 10.03.2025; Ogledov: 0; Prenosov: 5
Celotno besedilo (2,72 MB) Gradivo ima več datotek! Več... |
3. Use of Lignin, Waste Tire Rubber, and Waste Glass for Soil StabilizationSüleyman Gücek, Cahit Gürer, Bojan Žlender, Murat V. Taciroğlu, Burak E. Korkmaz, Kürşat Gürkan, Tamara Bračko, Borut Macuh, Rok Varga, Primož Jelušič, 2024, izvirni znanstveni članek Opis: The complex interactions between soil and additives such as lignin, glass powder, and rubber tires were investigated using principles of material and soil mechanics. Previous research has mainly focused on individual additives in clay soils. In contrast, this study investigates soil improvement with two different types of waste materials simultaneously. The improvement of soil properties by hybrid waste materials was evaluated using several laboratory tests, including the standard Proctor test, the unconfined compressive strength test, the California Bearing Ratio (CBR) test, and cyclic triaxial tests. The aim of this research is to identify key parameters for the design and construction of road pavements and to demonstrate that improving the subgrade with hybrid waste materials contributes significantly to the sustainability of road construction. The mechanical and physical properties were evaluated in detail to determine the optimal mixtures. The results show that the most effective mixture for the combination of waste glass powder and rubber tires contains 20% glass powder and 3% rubber tires, based on the dry weight of the soil. For the combination of waste glass powder and lignin, the optimum mixture consists of 15% glass powder and 15% lignin, based on the dry weight of the soil. These results provide valuable insights into the sustainable use of waste materials for soil stabilization in road construction projects.
Ključne besede: soil stabilization, waste glass, tire rubber waste, lignin, hybrid waste usage, mechanical
properties, pavement structure Objavljeno v DKUM: 28.02.2025; Ogledov: 0; Prenosov: 2
Celotno besedilo (5,20 MB) Gradivo ima več datotek! Več... |
4. Advancing energy recovery: evaluating torrefaction temperature effects on food waste properties from fruit and vegetable processingAndreja Škorjanc, Sven Gruber, Klemen Rola, Darko Goričanec, Danijela Urbancl, 2025, izvirni znanstveni članek Opis: Most organic waste from food production is still not used for energy production. From the perspective of energy production, one option is to valorise the properties of organic waste. The fruit juice industry is growing rapidly and generates large amounts of waste. One of the main wastes in food and fruit juice processing is peach pits and apple peels. The aim of this study was to analyse the influence of torrefaction temperature on the properties of food waste, namely apple peels, peach pits and pea shells, in order to improve their energy value and determine their potential for further use and valorisation as a renewable energy source. The aim was to analyse the influence of different torrefaction temperatures on the heating value (HHV), mass yield (MY) and energy yield (EY) in order to better understand the behavior of the thermal properties of individual selected samples. The torrefaction process was carried out at temperatures of 250 ◦C, 350 ◦C and 450 ◦C. The obtained biomass was compared with dried biomass. For apple peels, HHV after torrefaction was (28 kJ/kg), MY decreased by (66–34%), while EY fell by (97–83%). Peach pits, despite a higher HHV after torrefaction (18 kJ/kg), achieved low MY (38–89%) and EY (59–99%), which reduces their efficiency in biochar production. Pea peels had EY (82–97%) and a lower HHV after torrefaction (11 kJ/kg), but their high ash content limits their wider use. The results confirm that, with increasing temperature, MY and EY for all selected biomasses decrease, which is a consequence of the degradation of hemicellulose and cellulose and the loss of volatile compounds. In most cases, increasing the torrefaction temperature improved the resistance to moisture adsorption, as this is related to the thermal process that causes structural changes. The results showed that the torrefaction process improved the hydrophobic properties of the biomass samples. Temperature was seen to have a great impact on mass energy efficiency. Apple peels generally had the highest mass and energy yield. Ključne besede: torrefaction, food waste, energy from waste, higher heating value, energy potential Objavljeno v DKUM: 07.02.2025; Ogledov: 0; Prenosov: 11
Celotno besedilo (3,55 MB) |
5. Multicriteria assessment of the quality of waste sorting centers - ǂaǂ case studyKarmen Pažek, Jernej Prišenk, Simon Bukovski, Boris Prevolšek, Črtomir Rozman, 2020, izvirni znanstveni članek Opis: In this paper, the quality of the municipal waste sorting process in seven waste management centers in Slovenia was assessed using the qualitative multicriteria analysis (MCA) method DEX (Decision EXpert) implemented in DEXi software, which is based on multicriteria decomposition of the problem and utility functions in the form of ʺif-thenʺ decision rules. The study was based on eight types of secondary raw materials. The quality of the secondary raw materials, the regularity of the delivery of secondary raw materials to recycling units based on the sorting efficiency, and the loading weight of the individual baled fractions in the transport of secondary raw materials for recycling were the main parameters used in the model. The final assessment shows good waste management service in centers A and D. Centers B, C, and F were rated ʺaverageʺ. The ʺbadʺ rating was assigned to centers E and G. Ključne besede: waste sorting, quality management, multicriteria decision analysis, expert system DEXi Objavljeno v DKUM: 03.02.2025; Ogledov: 0; Prenosov: 3
Celotno besedilo (2,88 MB) Gradivo ima več datotek! Več... |
6. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050Monika Dokl, Anja Copot, Damjan Krajnc, Yee Van Fan, Annamaria Vujanović, Kathleen B. Aviso, Raymond R. Tan, Zdravko Kravanja, Lidija Čuček, 2024, izvirni znanstveni članek Opis: Excessive production, indiscriminate consumption, and improper disposal of plastics have led to plastic pollution and its hazardous environmental effects. Various approaches to tackle the challenges of reducing the plastic footprint have been developed and applied, such as the production of alternative materials (design for recycling), the production and use of biodegradable plastic and plastics from power-to-X, and the development of recycling approaches. This study proposes an optimisation strategy based on regression to evaluate and predict plastic use and end-of-life fate in the future based on historical trends. The mathematical model is formulated and correlations based on functions of time are developed and optimised by minimising the sum of squared residuals. The plastic quantities up to the year 2050 are projected based on historical trends analysis, and for improved sustainability, projections are additionally based on intervention analyses. The results show that the global use of plastics is expected to increase from 464 Mt in 2020 up to 884 Mt in 2050, with up to 4725 Mt of plastics accumulated in stock in 2050 (from the year 2000). Compared to other available forecasts, a slightly lower level of plastic use and stock are obtained. The intervention analysis estimates a range of global plastics' consumption between 594 Mt and 1018 Mt in 2050 by taking into account its different increment rates (between −1 % and 2.65 %). In the packaging sector, the implementation of reduction targets (15 % reduction in 2040 compared to 2018) could lead to a 27.3 % decrease in plastic use in 2050 as compared to 2018, while achieving recycling targets (55 % in 2030) would recycle >75 % of plastic packaging in 2050. The partial substitution of fossil-based plastics with bioplastics (polyethylene) will require significant land area, between 0.2 × 106 km2 for obtaining switchgrass and up to around 1.0 × 106 km2 for obtaining forest residue (annual yields of 58.15 t/ha and 3.5 t/ha) in 2050. The intervention analysis shows that proactive policies can mitigate sustainability challenges, however achieving broader sustainability goals also requires reduction of footprints related to energy production and virgin plastic production, the production of bio-based plastics, and the full implementation of recycling initiatives. Ključne besede: plastic use, plastic waste, end-of-life fate, forecasting, hostorical trends, regression analysis, least square method, intervention analysis Objavljeno v DKUM: 31.01.2025; Ogledov: 0; Prenosov: 2
Celotno besedilo (1,08 MB) |
7. Energy demand distribution and environmental impact assessment of chitosan production from shrimp shellsFilipa A. Vicente, Robert Hren, Uroš Novak, Lidija Čuček, Blaž Likozar, Annamaria Vujanović, 2024, izvirni znanstveni članek Opis: Step towards resilience and sustainability through exploring renewable biomass and waste streams to produce higher-added value products and energy is among key aspects for closing the loops, saving resources, and reducing the resource and emission footprints. In that respective, crustacean shells waste can offer rich spectre of valuable compounds such as proteins, chitin, carotenoids. This waste is produced in large quantities worldwide, thus allowing for commercial valorisation. An overview of technologies is undertaken for more sustainable and environmentally friendly chitosan production via chitin isolation and conversion and compared to the conventional processes. Furthermore, an assessment of the environmental burden and energy demand distribution for conventional and more sustainable alternative processes was performed, based on lab-scale experimental data. Three different chitin extraction routes and three distinct chitosan conversion processes were considered and compared for their greenhouse gas footprint, abiotic depletion, acidification, eutrophication and other potentials. Finally, the energy demand distribution was analysed considering electricity production patterns from three European countries, Slovenia, Portugal and Norway. The results showed that alternatives 3-A and 3-B (conventional eco-solvents - conventional deacetylation with 40 % and 50 % NaOH) generate the lowest environmental burden (184 g CO2 eq./g chitosan). Electricity was the main hotspot of the processes, used either for extraction, plasma treatment or deacetylation. The sensitivity analysis proved that the Norwegian electricity mix has the lowest environmental impact (4.2 g CO2 eq./g chitosan). This study highlights the impact of blue biorefineries by transforming marine waste to valuable biopolymers such as chitin and chitosan. Ključne besede: shrimp shells waste, blue biorefinery, value-added products, chitosan, sustainable production, comparative environmental assessment Objavljeno v DKUM: 08.01.2025; Ogledov: 1; Prenosov: 3
Celotno besedilo (2,16 MB) |
8. Decomposition and fragmentation of conventional and biobased plastic wastes in simulated and real aquatic systemsOlivija Plohl, Lidija Fras Zemljič, Alen Erjavec, Noemi Sep, Maja Čolnik, Yee Van Fan, Mojca Škerget, Annamaria Vujanović, Lidija Čuček, Julija Volmajer Valh, 2024, izvirni znanstveni članek Opis: Plastics play a crucial role in our daily lives. The challenge, however, is that they become waste and contribute to a global environmental problem, increasing concerns about pollution and the urgent need to protect the environment. The accumulation and fragmentation of plastic waste, especially micro- and nanoplastics in aquatic systems, poses a significant threat to ecosystems and human health. In this study, the decomposition and fragmentation processes of conventional and biobased plastic waste in simulated water bodies (waters with different pH values) and in real water systems (tap water and seawater) are investigated over a period of one and six months. Three types of plastic were examined: thermoplastic polyethylene terephthalate and thermoset melamine etherified resin in the form of nonwovens and biobased polylactic acid (PLA) in the form of foils. Such a comprehensive study involving these three types of plastics and the methodology for tracking degradation in water bodies has not been conducted before, which underlines the novelty of the present work. After aging of the plastics, both the solid fraction and the leachate in the liquid phase were carefully examined. The parameters studied include mass loss, structural changes and alterations in functional groups observed in the aged plastics. Post-exposure assessment of the fragmented pieces includes quantification of the microplastic, microscopic observations and confirmation of composition by in situ Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. The leachate analysis includes pH, conductivity, turbidity, total carbon and microplastic size distribution. The results highlight the importance of plastic waste morphology and the minor degradation of biobased PLA and show that microfibers contribute to increased fragmentation in all aquatic systems and leave a significant ecological footprint. This study underlines the crucial importance of post-consumer plastic waste management and provides valuable insights into strategies for environmental protection. It also addresses the pressing issue of plastic pollution and provides evidence-based measures to mitigate its environmental impact. Ključne besede: polylactic acid, polyethylene terephthalate fabric, melamine etherifed resin fabric, aquatic environment, fragmentation, waste disposal Objavljeno v DKUM: 09.09.2024; Ogledov: 73; Prenosov: 23
Celotno besedilo (3,73 MB) Gradivo ima več datotek! Več... |
9. Assessing energy potential and chemical composition of food waste thermodynamic conversion products: a literature reviewAndreja Škorjanc, Darko Goričanec, Danijela Urbancl, 2024, izvirni znanstveni članek Opis: This study examines the considerable volume of food waste generated annually in Slovenia, which amounted to over 143,000 tons in 2020. The analysis shows that 40% of food waste consists of edible parts, highlighting the potential for reduction through increased consumer awareness and attitudes towards food consumption. The study shows that the consumption phase contributes the most to waste food (46%), followed by primary production (25%) and processing/manufacture (24%). The study addresses various thermodynamic processes, in particular, thermal conversion methods, such as torrefaction pyrolysis and hydrothermal carbonization, which optimize energy potential by reducing the atomic ratio (H/C) and (O/C), thereby increasing calorific value and facilitating the production of solid fuels. The main results show the effectiveness of torrefaction, pyrolysis and hydrothermal carbonization (HTC) in increasing the energy potential of food waste. Ključne besede: energy, thermodynamic conversions, pyrolysis, torrefaction, hydrothermal carbonization, food waste, energy potential, chemical composition Objavljeno v DKUM: 28.08.2024; Ogledov: 53; Prenosov: 9
Celotno besedilo (591,41 KB) |
10. A waste separation system based on sensor technology and deep learning: a simple approach applied to a case study of plastic packaging wasteRok Pučnik, Monika Dokl, Yee Van Fan, Annamaria Vujanović, Zorka Novak-Pintarič, Kathleen B. Aviso, Raymond R. Tan, Bojan Pahor, Zdravko Kravanja, Lidija Čuček, 2024, izvirni znanstveni članek Ključne besede: waste management, smart waste bin system, central post-sorting, sensor technology, deep learning, convolutional neural networks Objavljeno v DKUM: 23.08.2024; Ogledov: 51; Prenosov: 9
Celotno besedilo (3,64 MB) |