| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Efficient encoding and decoding of voxelized models for machine learning-based applications
Damjan Strnad, Štefan Kohek, Borut Žalik, Libor Váša, Andrej Nerat, 2025, izvirni znanstveni članek

Opis: Point clouds have become a popular training data for many practical applications of machine learning in the fields of environmental modeling and precision agriculture. In order to reduce high space requirements and the effect of noise in the data, point clouds are often transformed to a structured representation such as a voxel grid. Storing, transmitting and consuming voxelized geometry, however, remains a challenging problem for machine learning pipelines running on devices with limited amount of on-chip memory with low access latency. A viable solution is to store the data in a compact encoded format, and perform on-the-fly decoding when it is needed for processing. Such on-demand expansion must be fast in order to avoid introducing substantial additional delay to the pipeline. This can be achieved by parallel decoding, which is particularly suitable for massively parallel architecture of GPUs on which the majority of machine learning is currently executed. In this paper, we present such method for efficient and parallelizable encoding/decoding of voxelized geometry. The method employs multi-level context-aware prediction of voxel occupancy based on the extracted binary feature prediction table, and encodes the residual grid with a pointerless sparse voxel octree (PSVO). We particularly focused on encoding the datasets of voxelized trees, obtained from both synthetic tree models and LiDAR point clouds of real trees. The method achieved 15.6% and 12.8% reduction of storage size with respect to plain PSVO on synthetic and real dataset, respectively. We also tested the method on a general set of diverse voxelized objects, where an average 11% improvement of storage space was achieved.
Ključne besede: voxel grid, feature prediction, tree models, prediction-based encoding, key voxels, residuals, sparse voxel octree
Objavljeno v DKUM: 09.01.2025; Ogledov: 0; Prenosov: 5
.pdf Celotno besedilo (20,93 MB)

2.
Reflection symmetry detection in earth observation data
David Podgorelec, Luka Lukač, Borut Žalik, 2023, izvirni znanstveni članek

Opis: The paper presents a new algorithm for reflection symmetry detection, which is specialized to detect maximal symmetric patterns in an Earth observation (EO) dataset. First, we stress the particularities that make symmetry detection in EO data different from detection in other geometric sets. The EO data acquisition cannot provide exact pairs of symmetric elements and, therefore, the approximate symmetry must be addressed, which is accomplished by voxelization. Besides this, the EO data symmetric patterns in the top view usually contain the most useful information for further processing and, thus, it suffices to detect symmetries with vertical symmetry planes. The algorithm first extracts the so-called interesting voxels and then finds symmetric pairs of line segments, separately for each horizontal voxel slice. The results with the same symmetry plane are then merged, first in individual slices and then through all the slices. The detected maximal symmetric patterns represent the so-called partial symmetries, which can be further processed to identify global and local symmetries. LiDAR datasets of six urban and natural attractions in Slovenia of different scales and in different voxel resolutions were analyzed in this paper, demonstrating high detection speed and quality of solutions.
Ključne besede: computer science, approximate symmetry, partial symmetry, local symmetry, point cloud, voxel, line segment
Objavljeno v DKUM: 28.09.2023; Ogledov: 438; Prenosov: 37
.pdf Celotno besedilo (8,92 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici