| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Računanje Wienerjevega indeksa uteženega grafa z združevanjem ?*-razredov
Simon Brezovnik, 2018, magistrsko delo

Opis: Wienerjev indeks igra pomembno vlogo pri poznavanju kemijskih in fizikalnih lastnosti različnih spojin. Predstavlja vsoto razdalj med vsemi neurejenimi pari vozlišč znotraj grafa. Uteženi graf je graf skupaj s funkcijo, ki vsakemu vozlišču predpiše realno število, imenovano utež. Magistrsko delo obravnava računanje Wienerjevega indeksa uteženega grafa s pomočjo reduciranja na posebno skupino grafov, tj. kvocientne grafe in nadaljnje redukcije kvocientnih grafov na enostavnejše grafe. V prvem delu predstavimo nekaj osnovnih definicij in ugotovitev teorije grafov. Zapišemo osnovno definicijo Wienerjevega indeksa in njegovo razširitev na utežene grafe. Spoznamo Djoković-Winklerjevo relacijo in njeno tranzitivno zaprtje. Ob koncu prvega dela spoznamo definicijo delne kocke in zapišemo njeno novo karakterizacijo. Osrednji del magistrske naloge podaja novi metodi za izračun Wienerjevega indeksa nekaterih uteženih grafov. Glavni izrek povezuje izračun Wienerjevega indeksa uteženega grafa z vsoto Wienerjevih indeksov uteženih kvocientnih grafov prvotnega grafa po vseh Θ^∗-razredih, kjer Θ^∗ predstavlja tranzitivno zaprtje Djoković-Winklerjeve relacije. V zadnjem delu predstavimo uporabo zgoraj omenjenega izreka na posebni družini grafov G_n, na benzenoidnih sistemih ter na linearnih fenilenih F_n.
Ključne besede: Wienerjev indeks, delna kocka, uteženi graf, kvocientni graf, Djoković-Winklerjeva relacija, tranzitivno zaprtje
Objavljeno: 24.09.2018; Ogledov: 450; Prenosov: 99
.pdf Celotno besedilo (1,00 MB)

2.
Szeged indeks povezav, pi indeks in wienerjev indeks povezav benzenoidnih sistemov
Doroteja Štunf, 2017, magistrsko delo

Opis: Magistrska naloga obravnava benzenoidne sisteme. Predstavljena je uporaba teorije grafov v kemiji in s tem uporabna povezava med kemijo in matematiko. V uvodnih poglavjih so zato predstavljeni osnovni pojmi teorije grafov in kemijski pojmi, ki so potrebni za razumevanje nadaljnje snovi. Benzenoidni sistemi so zanimivi za raziskovanje, saj predstavljajo skupino kemijskih spojin imenovano benzenoidni ogljikovodiki. V nadaljevanju naloge so podane osnovne lastnosti in definicije benzenoidnih sistemov. V uvodu osrednjega dela so navedene definicije Wienerjevega, Szeged in PI indeksa za poljubne in nato še za utežene grafe. Sledi vpeljava vseh treh indeksov povezav s predstavitvijo algoritmov za njihov izračun v linearni časovni zahtevnosti, ki je v nalogi tudi dokazana. Za lažje razumevanje so dodani primeri izračuna na izbranem primeru benzenoidnega sistema.
Ključne besede: benzenoidni sistem, topološki indeks, Wienerjev indeks povezav, Szeged indeks povezav, PI indeks, uteženi graf, elementarni razrez, kvocientno drevo, linearna časovna zahtevnost
Objavljeno: 09.01.2018; Ogledov: 700; Prenosov: 52
.pdf Celotno besedilo (1,09 MB)

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici