| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 12
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Upper semi-continuous set-valued functions and inverse limits
Iztok Banič, 2012, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje)

Ključne besede: inverse limits, upper semi-continuous functions
Objavljeno: 07.06.2012; Ogledov: 853; Prenosov: 18
URL Povezava na celotno besedilo

2.
Limits of inverse limits and applications
Matej Merhar, Iztok Banič, Matevž Črepnjak, Uroš Milutinović, 2011, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: mathematics, topology, continua, inverse limits, upper semi-continuous set-valued functions
Objavljeno: 07.06.2012; Ogledov: 664; Prenosov: 12
URL Povezava na celotno besedilo

3.
Paths through inverse limits
Iztok Banič, Matevž Črepnjak, Matej Merhar, Uroš Milutinović, 2011, izvirni znanstveni članek

Opis: In Banič, Črepnjak, Merhar and Milutinović (2010) [2] the authors proved that if a sequence of graphs of surjective upper semi-continuous set-valued functions ▫$f_n : X to 2^X$▫ converges to the graph of a continuous single-valued function ▫$f : X to X$▫, then the sequence of corresponding inverse limits obtained from ▫$f_n$▫ converges to the inverse limit obtained from ▫$f$▫. In this paper a more general result is presented in which surjectivity of ▫$f_n$▫ is not required. The result is also generalized to the case of inverse sequences with non-constant sequences of bonding maps. Finally, these new theorems are applied to inverse limits with tent maps. Among other applications, it is shown that the inverse limits appearing in the Ingram conjecture (with a point added) form an arc.
Ključne besede: mathematics, topology, continua, limits, inverse limits, upper semi-continuous set-valued functions, paths, arcs
Objavljeno: 07.06.2012; Ogledov: 799; Prenosov: 31
URL Povezava na celotno besedilo

4.
Two constructions of continua: inverse limits and compactifications
Tina Sovič, 2013, doktorska disertacija

Opis: In the thesis we talk about two different constructions of continua. First we present the generalized inverse limits, with help of which we construct Wazewski's universal dendrite. What follows is a description of the compactifications of a ray and the presentation of results about their span. The first chapter will be an introduction to the continuum theory trough interesting examples, as sin(1/x)-continuum, Hilbert cube, Brouwer-Janiszewski-Knaster continuum and pseudoarc. We will present some of their properties, among which irreducibility, smoothness and span zero are the most important ones for us. In the continuation we intend to present some various constructions of continua. The main focus will be on the generalized inverse limits and compactifications of rays, which will also be a central part of the thesis. In this chapter, we also study inverse limits in the category of compact Hausdorff spaces with upper semi-continuous functions. We show that the inverse limits with upper semi-continuous bonding functions, together with the projections are weak inverse limits in this category. The following two are the most important chapters in the thesis. The first is a detailed description of a construction of the family of upper semi-continuous functions f, such that the inverse limit of the inverse sequence of unit intervals and f, as the only bonding function, is homeomorphic to Wazewski's universal dendrite for each of it. Among other results we will also give a complete characterization of comb-functions, for which the inverse limits of the type described above are dendrites. The next important chapter will be about compactifications of rays. In the first part of this chapter we will use compactifications to prove that for each continuum Y there is an irreducible smooth continuum that contains a topological copy of Y. The second part presents the main results of this chapter; i.e. the span of a compactification of a ray with a remainder that has a span zero is also zero. In the proofs of this chapter we will help ourselves with a discretization of span.
Ključne besede: continua, inverse limit, inverse sequence, upper semi-continuous function, set-valued functions, bonding function, hyperspace, dendrite, universal dendrite, category, compactification, compactification of a ray, smooth continua, irreducible continua, span, span zero
Objavljeno: 25.09.2013; Ogledov: 1313; Prenosov: 84
.pdf Celotno besedilo (861,84 KB)

5.
Paths through inverse limits
Iztok Banič, Matevž Črepnjak, Matej Merhar, Uroš Milutinović, 2009

Opis: In [I.Banič, M. Črepnjak, M. Merhar, U. Milutinović, Limits of inverse limits, Topology Appl. 157 (2010) 439-450] the authors proved that if a sequence of graphs of surjective upper semi-continuous set-valued functions ▫$f_n: X rightarrow 2^X$▫ converges to the graph of a continuous single-valued function ▫$f: X rightarrow X$▫, then the sequence of corresponding inverse limits obtained from ▫$f_n$▫ converges to the inverse limit obtained from ▫$f$▫. In this paper a more general result is presented in which surjectivity of ▫$f_n$▫ is not required. Also, the result is generalized to the case of inverse sequences with non-constant sequences of bonding maps. Finally, these new theorems are applied to inverse limits with tent maps. Among other applications it is shown that the inverse limits appearing in the Ingram conjecture (with a point added) form an arc.
Ključne besede: matematika, topologija, kontinuumi, limite, inverzne limite, navzgor polzvezne večlične funkcije, poti, loki, mathematics, topology, continua, limits, inverse limits, upper semi-continuous set-valued functions, paths, arcs
Objavljeno: 10.07.2015; Ogledov: 460; Prenosov: 15
URL Povezava na celotno besedilo

6.
7.
Limits of inverse limits
Iztok Banič, Matevž Črepnjak, Matej Merhar, Uroš Milutinović, 2010, izvirni znanstveni članek

Opis: Obravnavamo naslednji problem: če zaporedje grafov navzgor polzveznih večličnih funkcij ▫$f_n$▫ konvergira h grafu funkcije ▫$f$▫, ali potem zaporedje pripadajočih inverznih limit, dobljenih s pomočjo funkcij ▫$f_n$▫ konvergira k inverzni limiti, dobljeni z ▫$f$▫?
Ključne besede: matematika, topologija, kontinuumi, limite, inverzne limite, navzgor polzvezne večlične funkcije, mathematics, topology, continua, limits, inverse limits, upper semi-continuous set valued functions
Objavljeno: 10.07.2015; Ogledov: 290; Prenosov: 9
URL Povezava na celotno besedilo

8.
9.
Ważewski's universal dendrite as an inverse limit with one set-valued bonding function
Iztok Banič, Matevž Črepnjak, Matej Merhar, Uroš Milutinović, Tina Sovič, 2012, izvirni znanstveni članek

Opis: Konstruirana je družina navzgor polzveznih večličnih funkcij ▫$f:[0,1] rightarrow 2^{[0,1]}$▫, za katere velja, da je inverzna limita inverznega zaporedja intervalov ▫$[0,1]$▫ in ▫$f$▫ kot edine vezne preslikave homeomorfna univerzalnemu dendritu Ważevskega.
Ključne besede: topologija, kontinuum, inverzna limita, večlična funkcija, dendrit, univerzalni dendrit Ważevskega, topology, continua, inverse limits, upper semi-continuous functions, dendrites, Ważewski's universal dendrite
Objavljeno: 10.07.2015; Ogledov: 337; Prenosov: 48
URL Povezava na celotno besedilo

10.
Inducing functions between inverse limits with upper semicontinuous bonding functions
Iztok Banič, Matevž Črepnjak, Goran Erceg, Matej Merhar, Uroš Milutinović, 2013, izvirni znanstveni članek

Opis: V članku predstavljamo kategorijo ▫$mathcal{CU}$▫, kjer so objekti kompaktni metrični prostori ▫$X$▫ morfizmi med njimi pa navzgor polzvezne preslikave iz ▫$X$▫ v ▫$2^Y$▫. Vpeljemo tudi kategorijo ▫$mathcal{ICU}$▫ inverznih zaporedij v ▫$mathcal{CU}$▫. Proučujemo inducirane funkcije med inverznimi limitami kompaktnih metričnih prostorov z navzgor polzveznimi veznimi funkcijami. Podamo kriterije za njihov obstoj in dokažemo imajo pod določenimi pogoji surjektivne grafe. Pokažemo tudi da predpis, ki objektom iz ▫$mathcal{ICU}$▫ priredi njihove inverzne limite, ki so objekti v ▫$mathcal{CU}$▫, morfizmom pa priredi inducirane preslikave ni funktor iz ▫$mathcal{ICU}$▫ v ▫$mathcal{CU}$▫, (je pa temu zelo blizu). Na koncu podamo še uporabno aplikacijo dokazanih rezultatov.
Ključne besede: topologija, inverzne limite, navzgor polzvezne funkcije, inducirane funkcije, inducirani morfizmi, topology, inverse limits, upper semi-continuous functions, induced functions, induced morphisms
Objavljeno: 10.07.2015; Ogledov: 330; Prenosov: 23
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.2 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici