| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning
Milan Bajić, Jr., Božidar Potočnik, 2023, izvirni znanstveni članek

Opis: A few promising solutions for thermal imaging Unexploded Ordnance (UXO) detection were proposed after the start of the military conflict in Ukraine in 2014. At the same time, most of the landmine clearance protocols and practices are based on old, 20th-century technologies. More than 60 countries worldwide are still affected by explosive remnants of war, and new areas are contaminated almost every day. To date, no automated solutions exist for surface UXO detection by using thermal imaging. One of the reasons is also that there are no publicly available data. This research bridges both gaps by introducing an automated UXO detection method, and by publishing thermal imaging data. During a project in Bosnia and Herzegovina in 2019, an organisation, Norwegian People's Aid, collected data about unexploded ordnances and made them available for this research. Thermal images with a size of 720 x 480 pixels were collected by using an Unmanned Aerial Vehicle at a height of 3 m, thus achieving a very small Ground Sampling Distance (GSD). One of the goals of our research was also to verify if the explosive war remnants' detection accuracy could be improved further by using Convolutional Neural Networks (CNN). We have experimented with various existing modern CNN architectures for object identification, whereat the YOLOv5 model was selected as the most promising for retraining. An eleven-class object detection problem was solved primarily in this study. Our data were annotated semi-manually. Five versions of the YOLOv5 model, fine-tuned with a grid-search, were trained end-to-end on randomly selected 640 training and 80 validation images from our dataset. The trained models were verified on the remaining 88 images from our dataset. Objects from each of the eleven classes were identified with more than 90% probability, whereat the Mean Average Precision (mAP) at a 0.5 threshold was 99.5%, and the mAP at thresholds from 0.5 to 0.95 was 87.0% up to 90.5%, depending on the model's complexity. Our results are comparable to the state-of-the-art, whereat these object detection methods have been tested on other similar small datasets with thermal images. Our study is one of the few in the field of Automated UXO detection by using thermal images, and the first that solves the problem of identifying more than one class of objects. On the other hand, publicly available thermal images with a relatively small GSD will enable and stimulate the development of new detection algorithms, where our method and results can serve as a baseline. Only really accurate automatic UXO detection solutions will help to solve one of the least explored worldwide life-threatening problems.
Ključne besede: unmanned aerial vehicle, unexploded ordnance, thermal imaging, UXOTi_NPA dataset, convolutional neural networks, deep learning
Objavljeno v DKUM: 12.02.2024; Ogledov: 389; Prenosov: 26
.pdf Celotno besedilo (16,94 MB)
Gradivo ima več datotek! Več...

2.
The weaponisation of drones – a threat from above used for terrorist purposes
Ice Ilijevski, Zlate Dimovski, Kire Babanoski, 2021, pregledni znanstveni članek

Opis: Purpose: The subject of this paper is to determine the threat of drones (unmanned aerial vehicles – UAVs), which are evolving rapidly and becoming more efficient, powerful, and easily weaponised, with regard to their use by terrorist organisations. Because of the precision, efficiency, and economy of drones, in the last decade terrorist organisations have used these to carry out attacks all over the world. The paper discusses the prevention and the countermeasures undertaken by national authorities, as well as the development of defensive tactics against drone strikes. The paper notes that the threat posed drones is even greater than many imagine, as they can be used to attack critical infrastructure. Design/Methods/Approach: The tactical ways in which terrorist organisations have made malicious use of drones are considered and described in the paper. In order to better understand the core of this problem, the methods and techniques of attack, the characteristics of the drones and the measures taken by the security and intelligence services in the fight against this threat are reviewed and assessed. All these questions were also addressed by theorists researching this field in semi-structured interviews conducted online. Findings: Because of the rapid development of the technology and progress in the area of drone production, as well as their low price and the availability, drones can be easily transformed into improvised explosive devices that are attractive to many terrorist organisations and individuals, producing a new type of asymmetrical threat. The threat coming from air that is posed by drones is very sophisticated and complex, and deserves more attention from national security authorities. Moreover, the development and introduction of protective and preventive approaches and mechanisms on an international level, and full implementation on a national level, is essential to prevent planned attacks with drones. Originality/Value: This topic is rarely discussed in security research and studies. The paper offers a solid overview of the problems and threats that drones are already causing to law enforcement agencies, and the challenges for national authorities with regard to preventing them.
Ključne besede: drone, unmanned aerial vehicle, terrorism, terrorist attack, threat
Objavljeno v DKUM: 26.01.2022; Ogledov: 835; Prenosov: 23
URL Povezava na datoteko
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.08 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici