1.
Contrasting temporal trend discovery for large healthcare databasesGoran Hrovat,
Gregor Štiglic,
Peter Kokol,
Milan Ojsteršek, izvirni znanstveni članek
Opis: With the increased acceptance of electronic health records, we can observe theincreasing interest in the application of data mining approaches within this field. This study introduces a novel approach for exploring and comparingtemporal trends within different in-patient subgroups, which is basedon associated rule mining using Apriori algorithm and linear model-based recursive partitioning. The Nationwide Inpatient Sample (NIS), Healthcare Costand Utilization Project (HCUP), Agency for Healthcare Research and Qualitywas used to evaluate the proposed approach. This study presents a novelapproach where visual analytics on big data is used for trend discovery in form of a regression tree with scatter plots in the leaves of the tree. Thetrend lines are used for directly comparing linear trends within a specified time frame. Our results demonstrate the existence of opposite trendsin relation to age and sex based subgroups that would be impossible to discover using traditional trend-tracking techniques. Such an approach can be employed regarding decision support applications for policy makers when organizing campaigns or by hospital management for observing trends that cannot be directly discovered using traditional analytical techniques.
Ključne besede: data mining, decision support, trend discovery
Objavljeno v DKUM: 27.11.2014; Ogledov: 2025; Prenosov: 669
Celotno besedilo (1013,97 KB)
Gradivo ima več datotek! Več...