1.
Nonexistence of face-to face four-dimensional tilings in the Lee metricSimon Špacapan, 2007, izvirni znanstveni članek
Opis: A family of ▫$n$▫-dimensional Lee spheres ▫$mathcal{L}$▫ is a tiling of ▫${mathbb{R}}^n$▫ if ▫$cupmathcal{L} = {mathbb{R}}^n$▫ and for every ▫$L_u, L_v in mathcal{L}$▫, the intersection ▫$L_u cap L_v$▫ is contained in the boundary of ▫$L_u$▫. If neighboring Lee spheres meet along entire ▫$(n-1)$▫-dimensional faces, then ▫$mathcal{L}$▫ is called a face-to-face tiling. We prove nonexistence of a face-to-face tiling of ▫${mathbb{R}}^4$▫, with Lee spheres of different radii.
Ključne besede: delitev, Leejeva metrika, popolne kode, tiling, Lee metric, perfect codes
Objavljeno v DKUM: 10.07.2015; Ogledov: 1003; Prenosov: 84
Povezava na celotno besedilo