| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Nonexistence of face-to face four-dimensional tilings in the Lee metric
Simon Špacapan, 2007, izvirni znanstveni članek

Opis: A family of ▫$n$▫-dimensional Lee spheres ▫$mathcal{L}$▫ is a tiling of ▫${mathbb{R}}^n$▫ if ▫$cupmathcal{L} = {mathbb{R}}^n$▫ and for every ▫$L_u, L_v in mathcal{L}$▫, the intersection ▫$L_u cap L_v$▫ is contained in the boundary of ▫$L_u$▫. If neighboring Lee spheres meet along entire ▫$(n-1)$▫-dimensional faces, then ▫$mathcal{L}$▫ is called a face-to-face tiling. We prove nonexistence of a face-to-face tiling of ▫${mathbb{R}}^4$▫, with Lee spheres of different radii.
Ključne besede: delitev, Leejeva metrika, popolne kode, tiling, Lee metric, perfect codes
Objavljeno v DKUM: 10.07.2015; Ogledov: 1003; Prenosov: 84
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici