| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Experimental validation of a thermo-electric model of the photovoltaic module under outdoor conditions
Klemen Sredenšek, Bojan Štumberger, Miralem Hadžiselimović, Sebastijan Seme, Klemen Deželak, 2021, izvirni znanstveni članek

Opis: An operating temperature of the photovoltaic (PV) module greatly affects performance and its lifetime. Therefore, it is essential to evaluate operating temperature of the photovoltaic module in different weather conditions and how it affects its performance. The primary objective of this paper is to present a dynamic thermo-electric model for determining the temperature and output power of the photovoltaic module. The presented model is validated with field measurement at the Institute of Energy Technology, Faculty of Energy Technology, University of Maribor, Slovenia. The presented model was compared with other models in different weather conditions, such as clear, cloudy and overcast. The evaluation was performed for the operating temperature and output power of the photovoltaic module using Root-Mean-Square-Error (RMSE) and Mean-Absolute-Error (MAE). The average RMSE and MAE values are 1.75C and 1.14C for the thermal part and 20.34 W and 10.97 W for the electrical part.
Ključne besede: dynamic modeling, thermo-electric model, accuracy, measuring device, temperature, output power, PV module
Objavljeno v DKUM: 13.11.2023; Ogledov: 205; Prenosov: 11
.pdf Celotno besedilo (9,51 MB)
Gradivo ima več datotek! Več...

Comparison and implementation of thermo-mechanical fatigue damage models : magistrsko delo
Jure Vinkovič, 2021, magistrsko delo

Opis: The basis of the master thesis is an in-depth and comprehensive analysis of the scientific literature on damage models of thermo-mechanical fatigue. The aim of the thesis is to investigate and determine the suitability of damage models for their application in numerical simulations of components subjected to thermo-mechanical loading with in-phase, out-of-phase or constant temperature cycles. The theoretical background of material behavior under static and dynamic loads (e.g. low-cycle fatigue, high-cycle fatigue) is presented. The work also includes an overview of damage mechanisms typical of time-temperature varying loading conditions (e.g. cyclic softening and hardening of the material, mean stress relaxation, material creep, visco-plasticity, etc.). This is followed by a structured review of several damage models of thermo-mechanical fatigue (e.g. Neu-Sehitoglu, DTMF, Coffin-Manson, Ostergren, Smith-Watson-Topper, Unified Energy Approach, etc.). An overview of the experimental tests on aluminum alloy and cast iron carried out at temperatures up to 800 °C is given. The idea of processing the raw experimental data including the calibration procedure of the thermo-mechanical fatigue damage models is schematically illustrated and described. The basic mathematical laws of constitutive material models for both material types are given. In the conclusion of the MSc thesis, the correlations of the calibrated damage models are presented, which, together with the constructive opinions, give an important message on the application of the individual damage models depending on the type of material and the loading method.
Ključne besede: thermo-mechanical fatigue, constitutive material model, damage model, aluminum alloy, cast iron alloy, finite element method
Objavljeno v DKUM: 03.01.2022; Ogledov: 764; Prenosov: 0

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici