| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 28
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
1.
2.
A note on spectrum-preserving maps
J. Alaminos, Matej Brešar, Peter Šemrl, A. R. Villena, 2012, izvirni znanstveni članek

Opis: Naj bosta ▫$A$▫ in ▫$B$▫ enotski polenostavni Banachovi algebri. Če je ▫$phi colon M_2(A)to B$▫ bijektivna linearna preslikava, ki ohranja spekter, potem je ▫$phi$▫ jordanski homomorfizem.
Ključne besede: matematika, teorija operatorjev, ohranjevalec spektera, Banachova algebra, jordanski homomorfizem, mathematics, operator theory, spectrum-preserving map, Banach algebra, Jordan homomorphism
Objavljeno: 10.07.2015; Ogledov: 672; Prenosov: 87
URL Povezava na celotno besedilo

3.
Characterizing Jordan maps on C [ast]-algebras through zero products
J. Alaminos, Matej Brešar, J. Extremera, A. R. Villena, 2010, izvirni znanstveni članek

Opis: Naj bosta ▫$A$▫ in ▫$B$▫ ▫$C^ast$▫-algebri, ▫$X$▫ naj bo bistveni Banachov ▫$A$▫-bimodul in naj bosta ▫$T colon A to B$▫ in ▫$S colon A to X$▫ zvezni linearni preslikavi; ▫$T$▫ naj bo surjektivna. Denimo, da je ▫$T(a)T(b) + T(b)T(a) = 0$▫ in ▫$S(a)b + bS(a) + aS(b) + S(b)a = 0$▫, kadarkoli ▫$a, b in A$▫ zadoščata ▫$ab = ba = 0$▫. Dokažemo, da je ▫$T = wPhi$▫ in ▫$S = D + wPsi$▫, kjer ▫$w$▫ leži v centru multiplikatorske algebre ▫$B$▫, ▫$Phicolon A to B$▫ je jordanski epimorfizem, ▫$D colon A to X$▫ je odvajanje in ▫$Psi colon A to X$▫ je bimodulski homomorfizem.
Ključne besede: matematika, teorija operatorjev, ▫$C^ast$▫-algebra, homomorfizem, jordanski homomorfizem, odvajanje, jordansko odvajanje, ohranjevalec ničelnega produkta, mathematics, operator theory, ▫$C^ast$▫-algebra, homomorphism, Jordan homomorphism, derivation, Jordan derivation, zero-product-preserving map
Objavljeno: 10.07.2015; Ogledov: 536; Prenosov: 12
URL Povezava na celotno besedilo

4.
Maps preserving zero products
J. Alaminos, Matej Brešar, J. Extremera, A. R. Villena, 2009, izvirni znanstveni članek

Opis: Linearna preslikava ▫$T$▫ iz Banachove algebre ▫$A$▫ v Banachovo algebro ▫$B$▫ ohranja ničelni produkt, če je ▫$T(a)T(b) = 0$▫, kadarkoli je ▫$ab = 0$▫. Glavna tema članka je vprašanje, kdaj je zvezna linearna surjektivna preslikava ▫$T: A to B$▫, ki ohranja ničelni produkt, uteženi homomorfizem. Dokažemo, da to velja za velik razred algeber, ki vključuje grupne algebre. Naša metoda sloni na obravnavi bilinearnih preslikav ▫$phi : A times A to X$▫ (kjer je ▫$X$▫ Banachov prostor) z lastnostjo, da iz ▫$ab=0$▫ sledi ▫$phi(a,b) = 0$▫. Dokažemo, da taka preslikava zadošča ▫$phi(amu, b) = phi(a,mu b)$▫ za vse ▫$a,b in A$▫ in vse ▫$mu$▫ iz zaprtja glede na krepko operatorsko topologijo podalgebre multiplikacijske algebre ▫${mathcal M}(A)$▫ generirane z dvostranko potenčno omejenimi elementi. Ta metoda je uporabna tudi za karakterizacijo odvajanj s pomočjo ničelnega produkta.
Ključne besede: matematika, teorija operatorjev, grupna algebra, ▫$C^ast$▫-algebra, homomorfizem, uteženi homomorfizem, odvajanje, posplošeno odvajanje, mathematics, operator theory, group algebra, ▫$C^ast$▫-algebra, homomorphism, weighted homomorphism, derivation, generalized derivation, separating map, disjointness preserving map, zero product preserving map, doubly power-bounded element
Objavljeno: 10.07.2015; Ogledov: 624; Prenosov: 78
URL Povezava na celotno besedilo

5.
6.
7.
8.
Zero product preserving maps on C[sup]1 [0,1]
J. Alaminos, Matej Brešar, Miran Černe, J. Extremera, A. R. Villena, 2008, izvirni znanstveni članek

Opis: Glavni rezultat članka karakterizira zvezne bilinearne preslikave ▫$phi$▫ iz ▫$C^1[0,1] times C^1[0,1]$▫ v Banachov prostor ▫$X$▫ z lastnostjo, da iz ▫$fg=0$▫ sledi ▫$phi(f,g) = 0$▫. Ta rezultat se uporabi pri študiju ohranjevalcev ničelnega produkta na ▫$C^1[0,1]$▫ in pri študiju operatorjev na ▫$C^1[0,1]$▫, ki zadoščajo neki verzijo pogoja o lokalnosti operatorja.
Ključne besede: matematika, teorija operatorjev, zvezne odvedljive funkcije, bilinearni ohranjevalci ničelnega produkta, linearni ohranjevalci ničelnega produkta, lokalni operator, mathematics, operator theory, continuously differentiable functions, zero product preserving bilinear map, zero product preserving linear map, local operator
Objavljeno: 10.07.2015; Ogledov: 544; Prenosov: 18
URL Povezava na celotno besedilo

9.
10.
Iskanje izvedeno v 0.31 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici