| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Prediction of the form of a hardened metal workpiece during the straightening process
Tadej Peršak, Jernej Hernavs, Tomaž Vuherer, Aleš Belšak, Simon Klančnik, 2023, izvirni znanstveni članek

Opis: In industry, metal workpieces are often heat-treated to improve their mechanical properties, which leads to unwanted deformations and changes in their geometry. Due to their high hardness (60 HRC or more), conventional bending and rolling straightening approaches are not effective, as a failure of the material occurs. The aim of the research was to develop a predictive model that predicts the change in the form of a hardened workpiece as a function of the arbitrary set of strikes that deform the surface plastically. A large-scale laboratory experiment was carried out in which a database of 3063 samples was prepared, based on the controlled application of plastic deformations on the surface of the workpiece and high-resolution capture of the workpiece geometry. The different types of input data, describing, on the one hand, the performed plastic surface deformations on the workpieces, and on the other hand the point cloud of the workpiece geometry, were combined appropriately into a form that is a suitable input for a U-Net convolutional neural network. The U-Net model’s performance was investigated using three statistical indicators. These indicators were: relative absolute error (RAE), root mean squared error (RMSE), and relative squared error (RSE). The results showed that the model had excellent prediction performance, with the mean values of RMSE less than 0.013, RAE less than 0.05, and RSE less than 0.004 on test data. Based on the results, we concluded that the proposed model could be a useful tool for designing an optimal straightening strategy for high-hardness metal workpieces. Our results will open the doors to implementing digital sustainability techniques, since more efficient handling will result in fewer subsequent heat treatments and shorter handling times. An important goal of digital sustainability is to reduce electricity consumption in production, which this approach will certainly do.
Ključne besede: sustraightening process, hardened workpiece, manufacturing, U-Net convolutional neural network, modeling, point cloud, digital sustainability
Objavljeno v DKUM: 02.04.2024; Ogledov: 124; Prenosov: 15
.pdf Celotno besedilo (10,52 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 2.59 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici