| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Microstructure of NiTi orthodontic wires observations using transmission electron microscopy
Janko Ferčec, Darja Feizpour, Borut Buchmeister, Franc Rojko, Bojan Budič, Borut Kosec, Rebeka Rudolf, 2014, izvirni znanstveni članek

Opis: This work presents the results of the microstructure observation of six different types of NiTi orthodontic wires by using Transmission Electron Microscopy (TEM). Within these analyses the chemical compositions of each wire were observed in different places by applying the EDS detector. Namely, the chemical composition in the orthodontic wires is very important because it shows the dependence between the phase temperatures and mechanical properties. Micro- structure observations showed that orthodontic wires consist of nano-sized grains containing precipitates of Ti2Ni and/or TiC. The first precipitated Ti2Ni are rich in Ti, while the precipitated TiC is rich in C. Further investigation showed that there was a difference in average grain size in the NiTi matrix. The sizes of grains in orthodontic wires are in the range from approximately 50 to 160 nm and the sizes of precipitate are in the range from 0,3 μm to 5 μm.
Ključne besede: orthodontic wires, nickel-titanium orthodontic wire, NiTi wire, shape memory alloys, SMA wires, microstructure, transmission electron microscopy, TEM, average grain size
Objavljeno v DKUM: 03.07.2017; Ogledov: 1373; Prenosov: 120
.pdf Celotno besedilo (869,15 KB)
Gradivo ima več datotek! Več...

Microstructural and phase analysis of CuAlNi shape-memory alloy after continuous casting
Mirko Gojić, Stjepan Kožuh, Ivan Anžel, Gorazd Lojen, Ivana Ivanić, Borut Kosec, 2013, izvirni znanstveni članek

Opis: The results of the characterization of a CuAlNi shape-memory alloy after continuous casting technology are shown. Using this procedure a bar with a diameter of 8 mm was manufactured. After solidification of the alloy the microstructure characterization was carried out using optic microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) methods. Our results showed that the as-cast alloy consisted of the parent β1 and β1’ martensite phases. The martensite phase primary as the needle-like inside grains was observed. Martensite laths have different orientations inside particular grains. It was found that the average grains size is 98.78 µm. The grain diameter near to the external surface is higher than in the center. The average hardness of the alloy was 275 HV1.
Ključne besede: shape memory alloys, martensite, continuous casting, grain size
Objavljeno v DKUM: 16.03.2017; Ogledov: 1127; Prenosov: 117
.pdf Celotno besedilo (1,28 MB)
Gradivo ima več datotek! Več...

Microstructure and properties of shape memory alloys
Albert C. Kneissl, Elfride Unterweger, Gorazd Lojen, Ivan Anžel, 2005, izvirni znanstveni članek

Opis: This work addresses three topics: the generation of two-way shape memory effects in NiTi, NiTiW and CuAlNi wire materials and the investigation of the long term stability of these effects; investigations on thin CuAlNi films produced by PVD; investigation on thin CuAlNi ribbons produced by melt-spinning.
Ključne besede: metallurgy, shape memory alloys, properties, microstructure
Objavljeno v DKUM: 01.06.2012; Ogledov: 2212; Prenosov: 100
URL Povezava na celotno besedilo

Microstructure of rapidly solidified Cu-Al-Ni shape memory alloy ribbons
Gorazd Lojen, Ivan Anžel, Albert C. Kneissl, Elfride Unterweger, Borut Kosec, Milan Bizjak, 2005, izvirni znanstveni članek

Opis: Cu-Al-Ni shape memory alloys (SMAs) are currently the only available high temperature SMAs, showing a good resistance against functional fatigue. In polycrystalline state, they are very brittle and exhibit, in general, only small reversible deformations. By melt spinning, thin Cu-Al-Ni ribbons can be manufactured directly from the melt. Appropriate casting parameters can ensurea single layer columnar structure with a fibre texture, which significantly increases the maximal reversible strain in longitudinal direction. Cu-Al-Ni ribbons, containing 13, 14 and 15 wt.% Al were cast by free jet melt spinning. Because of the alloys' low thermal conductivity, the cooling rate was surprisingly low - considering the crystal grain size - significantly below 103 K/s. Therefore, wide ribbons having a single layer columnar and (except the ribbons containing 13 wt.% Al) completely martensiticstructure could not be obtained. Regardless the chemical composition, the ribbons have a single layer columnar structure only if the thickness does not exceed approximately 50 m, otherwise the structure consists of at least two layers of equiaxed grains. In as-cast condition, only ribbons containing 13 wt.% Al seem to be completely martensitic. Heat treatments at temperatures up to 900 °C improved the structure of 13 and 14 wt.% Al ribbons. All ribbons exhibit one-way shape memory effect in as-cast condition. Heat-treated ribbons containing 13 wt.% Al exhibited two-way shape memory effect already after one bending and heating cycle.
Ključne besede: metallurgy, shape memory alloys, Cu-Al-Ni alloy, microstructure, melt spinning
Objavljeno v DKUM: 01.06.2012; Ogledov: 2385; Prenosov: 112
URL Povezava na celotno besedilo

Metallographic sample preparation of orthodontic Ni-Ti wire
Lidija Zorko, Rebeka Rudolf, 2009, izvirni znanstveni članek

Opis: Shape memory alloys (SMA) has been at the forefront of research for the last several decades. In this field especially, Nickel-Titanium (Ni-Ti) alloys have been found to be the most useful of all SMA. The most important applications of SMA Ni-Ti alloys are namely in medicine and dentistry, where they are used as orthodontic wires. In this paper we describe the procedure of preparing metallographic samples of typical orthodontic Ni-Ti wires which are nowadays used in dentistry praxis. We prepared the samples for microstructure observation using a light microscope. Special attention is given to the metallographic preparation, which could result in damages and deformations of the sample surfaces if the procedure is incorrect. Finally, we illustrated the typical metallographic recipe for Ni-Ti SMA alloys for optical observation.
Ključne besede: shape memory alloys, Ni-Ti wire, metallographic preparation, microstructure
Objavljeno v DKUM: 31.05.2012; Ogledov: 2083; Prenosov: 54
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.79 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici