| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Optimal distribution of incentives for public cooperation in heterogeneous interaction environments
Xiaojie Chen, Matjaž Perc, 2014, izvirni znanstveni članek

Opis: In the framework of evolutionary games with institutional reciprocity, limited incentives are at disposal for rewarding cooperators and punishing defectors. In the simplest case, it can be assumed that, depending on their strategies, all players receive equal incentives from the common pool. The question arises, however, what is the optimal distribution of institutional incentives? How should we best reward and punish individuals for cooperation to thrive? We study this problem for the public goods game on a scale-free network. We show that if the synergetic effects of group interactions are weak, the level of cooperation in the population can be maximized simply by adopting the simplest "equal distribution" scheme. If synergetic effects are strong, however, it is best to reward high-degree nodes more than low-degree nodes. These distribution schemes for institutional rewards are independent of payoff normalization. For institutional punishment, however, the same optimization problem is more complex, and its solution depends on whether absolute or degree-normalized payoffs are used. We find that degree-normalized payoffs require high-degree nodes be punished more lenient than low-degree nodes. Conversely, if absolute payoffs count, then high-degree nodes should be punished stronger than low-degree nodes.
Ključne besede: public cooperation, institutional reciprocity, scale-free network, punishment, reward
Objavljeno: 10.07.2017; Ogledov: 666; Prenosov: 329
.pdf Celotno besedilo (3,26 MB)
Gradivo ima več datotek! Več...

2.
Autapse-induced multiple coherence resonance in single neurons and neuronal networks
Ergin Yilmaz, Mahmut Ozer, Veli Baysal, Matjaž Perc, 2016, izvirni znanstveni članek

Opis: We study the effects of electrical and chemical autapse on the temporal coherence or firing regularity of single stochastic Hodgkin-Huxley neurons and scale-free neuronal networks. Also, we study the effects of chemical autapse on the occurrence of spatial synchronization in scale-free neuronal networks. Irrespective of the type of autapse, we observe autaptic time delay induced multiple coherence resonance for appropriately tuned autaptic conductance levels in single neurons. More precisely, we show that in the presence of an electrical autapse, there is an optimal intensity of channel noise inducing the multiple coherence resonance, whereas in the presence of chemical autapse the occurrence of multiple coherence resonance is less sensitive to the channel noise intensity. At the network level, we find autaptic time delay induced multiple coherence resonance and synchronization transitions, occurring at approximately the same delay lengths. We show that these two phenomena can arise only at a specific range of the coupling strength, and that they can be observed independently of the average degree of the network.
Ključne besede: neuronal dynamics, autapse, coherence resonance, scale-free network
Objavljeno: 23.06.2017; Ogledov: 558; Prenosov: 346
.pdf Celotno besedilo (1,63 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici